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Abstract

The advancements in hardware allow for data processing closer to
its source, such as sensors, which was traditionally performed in data
centers. This approach has multiple advantages, such as decreasing
latency overheads of data transfers and privacy. While the require-
ments and the constraints of the edge applications vary, the devices
are expected to be highly efficient as they are usually run using limited
harvested power. This work studies the performance of Intel Neural
Compute Stick 2 and the possible optimizations for increasing its ef-
ficiency. We first compare the device to other edge devices used for
the acceleration of machine learning inference workloads and charac-
terize its placement in this space with regard to its computational
power and power characteristics. Our results demonstrate that while
the device provides good performance at lower power consumption
in comparison to less specialized devices such as microcontrollers and
GPUs, the newer specialized architectures, such as the CoralAI TPU,
deliver similar performance at a fraction of the power consumption.
We further study the performance of the Neural Compute Engine and
SHAVE cores found on the device using fully-connected and convolu-
tional layers. We show that the flexibility of the SHAVE cores comes
at the cost of lower performance caused by large overheads attached
to parallelism. The results demonstrate that the SHAVE cores should
be utilized with caution and only if the operation is not already im-
plemented on the Neural Compute Engine. We further analyze the
effects of batching and show that this underutilized feature of the
Neural Compute Engine can increase the throughput of inference on
full-size models by up to an order of magnitude. This increase in per-
formance comes from the amortization of the constant overheads of
the operations and the data transfers.
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1 Introduction

The developments in the hardware space led to an increase in the number of
connected devices and the use of technology in more industries. Some of these
industries rely heavily on deployments of sensors, which collect large amounts
of data. This data was traditionally processed in data centers. However, the
advancements in processors and the introduction of new specialized hardware
architectures allow the processing to move closer to the source of the data,
the edge. The processing close to the data has many advantages, including
reduced latency connected with data transfers and privacy. Some of the
deployments at edge rely on real-time processing that drives further actions,
such as self-driving vehicles. Additionally, some deployments do not have
the bandwidth to transfer the massive amounts of data collected by the
devices and therefore need sophisticated methods for reducing the load on
the network through smart filtering or other means of data compression.

The requirements and constraints of running such workloads at the edge
vary immensely. The devices processing such data can include microcon-
trollers, which provide flexibility and a low power footprint while delivering
relatively low performance due to the low specialization and degree of paral-
lelism. More computationally heavy applications such as image processing,
including classification and segmentation, however, have to leverage more
specialized architectures ranging from edge-targeting SoC devices, such as
the NVIDIA Jetson devices, or highly specialized ASICs, including CoralAI
edge TPU or the Intel Neural Compute Stick 2.

The highly constrained nature of the deployment environment requires
the highest degree of efficiency from the devices, which means providing the
lowest latency/throughput at the lowest possible power footprint.

This work contributes to the field by studying the Intel Neural Compute
Stick 2, an ASIC designed to accelerate deep neural network inference at the
edge. Specifically, this work characterizes the placement of this device in
the fast-growing space of edge-targeting accelerators through an application-
specific benchmark against multiple other devices based on different architec-
tures. Through the benchmark, we gain a deeper understanding of trade-offs
connected to the use of this device, including its latency and power charac-
teristics, such as its power draw under load.

After the comparison against other devices within the field, we analyze
the device in isolation. We perform multiple micro-benchmarks to character-
ize the performance of the Neural Compute Engine, a deep neural network
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accelerator on the device, and the SHAVE cores, a flexible part of the chip
capable of running custom OpenCL kernels. Furthermore, we explore batch-
ing, an underutilized feature of the Intel Neural Compute Stick 2. At the end
of our work, we use the knowledge gained through the micro-benchmarks to
run inference using full-size neural networks to fully quantify the effects of
the applied optimizations on real-life usage of the device.

The key contributions of this work are:

• Characterization of the performance of the Intel Neural Compute Stick
2 with respect to the other devices, commonly leveraged to accelerate
workloads at the edge, through an application-specific benchmark.

• In-depth description of OpenVINO, a toolkit for optimization and run-
time of inference using the Neural Compute Stick 2.

• Overview of the device’s architecture, high-level optimizations available
through OpenVINO, and the programming paradigm for the SHAVE
cores.

• Performance and feasibility study of workload acceleration using cus-
tom OpenCL kernels running on the SHAVE cores, including character-
ization of effects of optimizations commonly leveraged on GPUs. This
study uses a fully-connected layer as an example of a custom kernel.

• Analysis of the effects of batching on the throughput of the Neural
Compute Engine.

2 Background

This section introduces the OpenVINO framework, a toolkit for deploying
neural network inference on the Intel Neural Compute Stick 2, and its com-
ponents, after which we introduce the Intel Neural Compute Stick 2 (NCS2)
itself, including a description of the architecture of the MYRIAD X run-
ning on the device, its extensibility and the possible high-level optimizations
applied through OpenVINO.

2.1 OpenVINO

OpenVINO [1] is a toolkit for the optimization and deployment of neural
network inference on a range of Intel’s devices, including CPUs, GPUs, FP-
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GAs, and other hardware accelerators such as the NCS2. In addition to the
devices produced by Intel, OpenVINO provides add-ons for deployment on
ARM CPUs and NVIDIA GPUs.

In contrast to popular deep learning frameworks such as TensorFlow and
PyTorch, OpenVINO focuses on inference only and uses the neural networks
trained using these frameworks as the base of their inference engines. In
addition to these two frameworks, OpenVINO also supports neural networks
trained in Caffe, MXNet, PaddlePaddle, and Kaldi, as well as other frame-
works, whose output can be converted to ONNX, an open format for the
representation and exchange of neural networks.

The OpenVINO toolkit is composed of two major parts:

• OpenVINO Development Tools - Part of the toolkit responsible
for converting the neural networks trained in other frameworks into
OpenVINO’s intermediate representation (IR).

• OpenVINO Runtime - Part of the toolkit responsible for running
inference on top of the IR produced by the OpenVINO Development
Tools on the variety of the supported hardware.

We now introduce these two parts of the toolkit in more depth.

2.1.1 OpenVINO Development Tools

The OpenVINO Development Tools is a set of utilities that make it easy
to convert models developed in different frameworks and optimize them for
deployment using OpenVINO.

Model Optimizer is responsible for converting the models to the Open-
VINO IR. In addition to this conversion, the tool performs optional transfor-
mation passes over the IR for optimal execution on end-point target devices.

These transformations vary in complexity. However, the most common
transformations include the compression of the default FP32 values to the
more efficient FP16 data type, conversion of the data layout of the tensors,
which can lead to improved performance due to a change in data access
patterns (locality), and embedding pre-processing operations such as input
normalization, commonly expected on data sets such as MobileNet.

In addition to these common transformations, the tool performs opera-
tion fusion, such as fusion of the batch normalization operation with the pre-
ceding convolutional or fully-connected layer. This layer can be decomposed
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into multiplication and addition, which, together with the multiplication and
the addition found in convolutional or fully-connected layers, create linear
combination, therefore allowing for the fusion of these two layers into single
multiplication and addition.

The IR is stored in two files (.xml and .bin), with the .xml file containing
the layout of the graph of the IR and the .bin file containing the data tied to
the nodes in the graph, such as the weights of the convolutional or the fully
connected layers.

Benchmark Tool allows for easy benchmarking of the model inference
performance on the end-point devices. This allows for comparison between
the performance on different models or using varying parameters for control-
ling the performance of the hardware accelerators (NCS2-specific parameters
described in section 2.2.3).

Post-Training Optimization Tool allows the users to quantize the mod-
els to 8 bits on supported devices (not applicable to NCS2), significantly
improving the inference performance.

Accuracy Checker allows the user to check the predictive performance
of the models before and after the quantization to 16 or 8 bits using the
above-mentioned tools. This utility is especially useful before deployment on
devices supporting multiple input data types.

Model Downloader and other Open Model Zoo tools , which offer
example models, showcasing different applications and the supporting code
for deploying these applications, including examples of input preparation and
output handling.

2.1.2 OpenVINO Runtime

The OpenVINO Runtime is responsible for running the OpenVINO models
produced by the OpenVINO Development Tools on the target hardware. Un-
like the OpenVINO Development tools, which must be installed only on the
development machine, the runtime must be installed on every host attached
to the hardware accelerator or on the device performing the inference in the
case of CPU.
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In the background, the runtime takes the IR of the model and compiles
the model to the operations specific to the hardware accelerators, such as
OpenCL kernels in the case of GPUs.

In addition to MacOS and Windows, the runtime is also available for
Linux, specifically on Ubuntu and Red Hat Linux distributions. For different
distributions, the runtime must be built from sources, or users can leverage
Ubuntu Docker images. To run the models, users have the option to interact
with the runtime using the Python, C++ and C APIs.

2.2 Intel Neural Compute Stick 2 (NCS2)

The NCS2 [2] is a hardware accelerator produced by Intel. It leverages the
Intel Movidius Myriad X Vision Processing Unit (VPU) chip to accelerate
the inference of convolutional neural networks.

Its small form factor and low power requirements make it a good candi-
date for deployment on edge. In addition, the communication and the power
delivery between the host and the accelerator are handled by the onboard
USB 3.0, allowing for the use of a variety of commodity hardware as the host
device.

In addition to the onboard vision accelerators and 16 MIPI lanes respon-
sible for streaming video data from multiple cameras and performing subse-
quent operations on these streams, including optical flow and stereo depth
(not exposed on the NCS2), the VPU chip also contains a Neural Compute
Engine and 16 SHAVE cores to accelerate deep neural network inference, de-
livering a total peak performance of 4 trillion operations per second (TOPS).
The chip also features 2.5 MB of centralized on-chip memory allowing for
400 GB/s of internal bandwidth [3]. Figure 1 shows the architecture of the
Myriad X chip.

Neural Compute Engine is a dedicated on-chip accelerator for deep neu-
ral networks delivering 1 TOPS peak inference performance. The accelerator
was built and optimized for 16-bit floating point operations, which is the
default option for deployment on the NCS2.

SHAVE Cores are programmable 128-bit VLIW vector processors opti-
mized for vision processing workloads. Figure 2 shows the architecture of the
SHAVE cores. Each core contains arithmetic units and register files for inte-
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Figure 1: Diagram of the Intel Movidius Myriad X architecture. [4]

gers, scalars, and vectors of size 128 bits. In addition to the on-core register
files, each core is connected to a 128 KiB slice of SRAM shared between the
cores through a bus.

While the most common operations found in neural networks are included
in the runtime, the users can extend the included operation set by writing
custom OpenCL kernels to be run on these SHAVE cores. The following sec-
tions will detail the process of extending the set of operations and specifically
writing custom OpenCL kernels.

Figure 2: Diagram of the SHAVE core architecture. [5]
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2.2.1 Extensibility of the VPU

With the fast-evolving field of research in new deep neural network archi-
tectures, it is important for hardware accelerators to be flexible enough to
accommodate these new advances. The VPU architecture and the Open-
VINO toolkit allow extending the set of operations supported out of the box
or adding custom implementations of existing operations.

The addition of a new operation involves two steps:

1. Definition of the operation semantics, including the input ingestion
and output of the operation. This includes mapping the operation
represented in ONNX or representation tied to the framework used for
training the model to OpenVINO’s IR.

2. Implementation of this operation. In the case of NCS2, this requires the
creation of the custom OpenCL kernel or decomposition of the opera-
tion into multiple smaller operations already available in OpenVINO’s
operations set.

In the case of custom re-implementation of an existing operation, the users
must create the custom OpenCL kernel and supply the bindings between
OpenVINO’s IR and the compiled OpenCL kernel to be used during the
inference.

2.2.2 Custom OpenCL Kernels

The implementation of the custom kernels is written in OpenCL version 1.2,
with support for the half float extensions. These kernels are compiled using
the proprietary OpenCL compiler provided by ComputeAorta included in
the OpenVINO Runtime distribution (supported only in version 2022.1).

To tie the IR topology to a custom implementation, the users provide a
configuration file written in XML, an example of which follows:

1 <CustomLayer name="FullyConnected" type="MVCL" version="1">

2 <Kernel entry="transpose">

3 <Source filename="fully_connected.bin"/>

4 <Parameters >

5 <Tensor arg -name="src_data" type="input" port -

index="0" format="BF"/>

6 <Data arg -name="weights" type="data" source="

weights" format="ANY"/>
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7 <Tensor arg -name="weights_transposed" type="

output_buffer" port -index="0" dim="output ,0" size="

1024*1024*2"/>

8 <Scalar arg -name="IW" type="int" port -index="0"

source="I.X"/>

9 <Scalar arg -name="OW" type="int" port -index="0"

source="O.X"/>

10 </Parameters >

11 <WorkSizes dim="output ,0" global="B,F,1" local="

16,16,1"/>

12 </Kernel >

13 </CustomLayer >

Listing 1: Example configuration file mapping FullyConnected operation in
OpenVINO IR to compiled kernel in the fully connected.bin file.

This example ties the FullyConnected operation found in the model’s
IR to the compiled custom kernel found in the fully connected.bin file. In
addition to this, it defines the parameter mapping between the IR node and
the OpenCL kernel, including the input tensors and the output buffer. The
file also defines the work group sizes to be associated with this kernel, using
either constant values or dimensions of either the input or output tensors.

The definition of the work group sizes translates to the number of work
groups and the number of work items inside each of these work groups. These
are terms standardly used in the context of OpenCL. In the context of CUDA,
these could be translated as threads (work items) and thread blocks (work
groups). These parameters effectively control the degree of parallelism in the
kernel.

The execution of the code on the SHAVE cores and the meaning of these
terms in the context of the SHAVE cores differs from the standardly used
definitions in the context of the GPUs. The relatively low degree of paral-
lelism of the device in comparison to the GPUs means that each work group
maps to a single SHAVE core, on which the work items are iterated over
sequentially unless the compiler detects a use of the globalID indicator of the
work item (coalesced data accesses), after which the compiler automatically
vectorizes its execution.

2.2.3 Inference Optimization Techniques in OpenVINO

Before resorting to custom re-implementation of available operations, the
users should leverage high-level optimization techniques available in Open-
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VINO. These include:

Data transfer pipelining can be leveraged to amortize the transfer times
between the host and the hardware accelerator. Each device implements an
on-device queue, which can store data for multiple inference requests and
retrieve them at its own pace.

Asynchronous execution of inference request consists of the host thread
sending data to the device and being notified once the execution is done. The
time between the successful transfer of the input data and the callback from
the device upon finishing its execution can be used to prepare input data for
the subsequent request handled by that thread.

Batching is a technique commonly used on massively parallel hardware,
such as GPUs. While the NCS2 has support for handling batched input data,
its use is not promoted.

Performance hints is a parameter that exposes the option to hint to
the device whether to optimize the inference to lower latency or increase
throughput. In the background, this option changes multiple parameters
depending on the target device. In the case of NCS2, the default performance
hint value is throughput and sets the number of optimal inference requests
to 4. Note that this does not affect the latency or throughput unless multiple
inference requests are utilized.

3 Related Work

Machine learning at edge is now a well-established topic and is gaining even
more traction as the advancements in edge-targeting hardware open new
possibilities of models able to run in resource-constrained environments.

These works include vision and survey papers [6, 7, 8, 9], which provide
a valuable overview of the field, in both the edge-targeting hardware, in-
cluding emerging hardware accelerators, but also software, such as different
frameworks for deploying machine learning applications or optimizations for
running these applications on the resource-constrained devices.

These applications are accelerated using devices based on different archi-
tectures, chosen based on the application requirements and the constraints
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posed by the deployment environment. These affect the size, power, and ther-
mal requirements, leading to a high need for efficiency in all these aspects.
Multiple works introduce and compare devices such as microcontrollers, edge-
targeting SoCs leveraging the power of GPUs or other hardware accelerators,
such as TPUs and VPUs [10, 11, 12], while others focus on creating bench-
marks specific to machine learning at the edge to facilitate these comparisons
[13, 14].

The Intel Neural Compute Stick 2 is the target hardware for many ma-
chine learning inference applications [15, 16, 17], but also a topic of in-depth
exploration and optimization [18, 19, 20]. In addition to the newer version
of the device, multiple works also explore the original version of the device
(Intel Neural Compute Stick 1) [21, 22, 23, 24, 20].

While the topic of implementing custom kernels in OpenCL is, to our
knowledge, not yet explored outside of Intel, some works leverage the not
publicly accessible Myriad X SDK, through which they optimize and analyze
the performance of the Myriad X chip [19].

In addition to the feasibility study of the deployment of custom kernels
on this device, we complement these works by providing an application-
specific comparison between a wide range of edge devices, including analysis
of latency and the power characteristic of the devices under load, in addition
to an in-depth analysis of the performance of the Intel Neural Compute
Stick 2 and its Neural Compute Engine and the SHAVE cores. Furthermore,
we give an overview of one of the possible deployment tools in the field of
machine learning at the edge, the OpenVINO toolkit.

4 Fully-connected Layer

Together with the convolutional layer, the fully-connected layer is the most
utilized layer in neural network architectures. It is a layer in which each
neuron applies a linear transformation to the input vector. It is characterized
by the following equation:

y = xW T + b (1)

, where x is the input vector, W is the weight matrix, b is bias, and y is
the output vector, the result of this linear transformation.

The addition of the bias is often fused into the matrix-vector multiplica-
tion by prepending the weight matrix with an extra row, which contains the
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elements of the bias vector, and prepending the input vector with a 1.
In this section, we further explore the matrix-vector multiplication and

the optimizations of its computation on parallel hardware and then explore
the implementation of the batched version of the layer using matrix-matrix
multiplication [25].

4.1 Matrix-vector Multiplication

A simple matrix-vector multiplication is presented in fig. 3. The matrix-
vector multiplication consists of performing a dot product of the input vec-
tor (x) with each of the columns of the weight matrix (W ), which can be
represented by a vector of size K, matching the size of the input vector. The
result of the product corresponds to a new entry in the output vector (y).
The size of this output vector matches the second dimension of the matrix
W (dimension M not shared with the input vector), as the dot product is
iterated over M times.

Figure 3: Example of matrix-vector multiplication.

This algorithm’s simplest (näıve) parallel version runs in M threads, cor-
responding to the total number of vector dot products. Each thread contains
an accumulator initialized to 0 or the bias value. Furthermore, it contains a
sequential for-loop, which iterates over the common dimension and performs
a multiply-accumulate (MAC) operation for the two scalar values. These
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scalar values are loaded from global memory (DRAM). As there is no data
reuse of the elements of the weight matrix between threads, the use of scratch-
pad memory does not bring benefits.

Now we introduce types of optimizations that can improve on the perfor-
mance of this näıve implementation.

Coalesced access is a type of memory access in which threads in a work
group access memory simultaneously while accessing consecutive elements in
memory, as shown in fig. 4. The threads in this work group collaborate to
load this data to local / scratchpad memory, in case of data reuse between
the threads or into the threads’ register otherwise.

Figure 4: Example of coalesced access, where threads T0 to T7 access con-
secutive elements of matrix W in parallel (in this example whole row), only
after which the threads access the next values.

Tiling is a type of optimization that breaks up the problem to achieve
better memory access characteristics. In the case of matrix-vector multipli-
cation, we can increase the number of work items in a work group, which will
load a block of the weight matrix into local memory shared by the threads
in a coalesced fashion, as shown in fig. 5.

The use of tiling increases computational intensity (number of instruc-
tions per memory access), as for the input vector, we access the global mem-
ory only once per work group while still using it once in each thread. The
rows of the tile in the matrix are loaded sequentially. While this optimiza-
tion increases the computational intensity for the input vector, this remains
the same for the weight matrix, as tiling does not bring any data reuse
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there. Matrix-vector multiplication is a special case of matrix-matrix mul-
tiplication, where the size of the input matrix along one axis is 1. Unlike
in matrix-vector multiplication, matrix-matrix multiplication would increase
the computational intensity in the weight matrix by parallelizing computa-
tion in the second dimension.

Figure 5: Example of tiled matrix-vector multiplication, where threads T0 to
T3 collaborate on loading the highlighted tile of the matrix and input vector
into scratchpad memory.

Increasing work per thread decreases the overall number of threads and
increases utilization of faster register. Unlike in matrix-matrix multiplication,
however, this optimization also does not bring any improvement in data reuse.

Vector operations leverage SIMD instructions within the threads. This
optimization increases throughput and decreases the latency of the layer.

4.2 Matrix-matrix Multiplication

By stacking multiple input vectors into a matrix, we create a batched version
of the fully-connected layer, implemented as a matrix-matrix multiplication.
While this approach does not decrease the total number of MAC operations
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compared to the non-batched approach, introducing a second dimension of
the input vector allows for parallelism in this second dimension.

This second dimension for parallelism leads to multiple advantages we
alluded to in the previous section. This includes the increase in data reuse
of the tiled implementation. The whole tile of both the input and weight
matrices can be loaded entirely in parallel, and each of the elements of the
matrices reused T times, where T is the size of the tile.

Furthermore, the matrix-matrix multiplication allows for an increase in
the number of elements processed by a single thread. In addition to lowering
the total number of threads for this operation, this optimization allows for
higher use of faster registers for performing the MAC operations through
register tiling optimization.

5 Benchmark against other Devices

By comparing the NCS2 against other devices in the space of edge-targeting
machine learning accelerators, we can gain a baseline for its performance and
characterize its position in the space. We first describe the methodology and
the experimental setup of the benchmark, after which we present the results
of the described experiments, followed by a discussion of the results.

5.1 Methodology and Experimental Setup

This section describes the methodology and the experimental setup of the
benchmark, including the introduction of the devices under test, workload
definition, and description of the metrics used to evaluate the performance
of the devices.

5.1.1 Devices under Test

The set of devices we conducted experiments on contains representative de-
vices based on different architectures, including a microcontroller, edge SoC
leveraging GPU for the workload acceleration, and multiple devices contain-
ing ASICs, including the NCS2 and representatives of the CoralAI family of
edge TPUs.
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ARM Cortex-M7 Microcontroller [26] This device represents the de-
vice with the lowest degree of specialization. It contains a single ARM
Cortex-M7 core, on which we run a bare-metal application. The low-power
CPU delivers low performance compared to the rest of the devices. However,
it has very low power requirements, making it the best choice for running
simple machine learning tasks in deployments with a very low power budget.
Table 1 shows the device’s full specifications.

Deployment of machine learning workloads on this device leverages the
TensorFlow Lite for Microcontrollers framework [27]. This framework was
designed to run on very resource-constrained hardware, with the runtime
fitting in 16KB of memory, the most significant limiting factor for deployment
on this type of device.

While this device supports floating point operations, we limit the precision
of the neural network to 8-bit integers, which further reduces the memory
requirement and lowers the expected latency. The choice of the 8-bit precision
also means that no input scaling is needed, further reducing the preprocessing
time.

Furthermore, we leverage CMSIS-NN kernels [28], a collection of neu-
ral network kernels explicitly crafted for running on ARM Cortex-M class
devices. The use of these kernels further aids in minimizing the memory
footprint and latency of inference. The deployment of the TensorFlow Lite
for Microcontrollers utilizing the CMSIS-NN kernels was facilitated using
the X-CUBE-AI [29], which provides a user-friendly interface, making the
deployment easier.

Processor ARM Cortex-M7 @ 300 MHz
SRAM 1 MB
Flash 2 MB
Dimensions 138.0 x 99.7 x 17.7 mm
Mass 59.2 g

Table 1: Specifications of the ARM Cortex-M7 microcontroller. The dimen-
sions and the mass are based on the STM32 NUCLEO-H745ZI-Q develop-
ment board.

NVIDIA Jetson Nano [30] This embedded SoC device leverages GPU
and its high degree of parallelism to accelerate machine learning workloads
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at the edge. It takes inspiration from the success of the GPU-accelerated
servers used for machine learning workloads. It translates them into the
edge environment, delivering lower performance but an order of magnitude
lower power draw than its full-size counterparts.

While providing a high degree of parallelism, this device is more general-
purpose than those leveraging ASICs, such as the NCS2. In addition to per-
forming deep neural network inference, this device can perform full training
and preprocessing operations, which can take advantage of the high degree
of parallelism. The full specifications of the device are shown in table 2.

The inference deployment is performed using either the TensorFlow frame-
work [31] or the TensorRT framework [32], with the TensorRT framework
delivering a more optimized engine. Like OpenVINO, TensorRT is a frame-
work that creates an optimized inference engine for neural networks trained
outside this tool. It targets NVIDIA GPUs and creates an optimized infer-
ence engine, which can take advantage of all of the capabilities of the device,
which are mostly unavailable through use of other frameworks including the
TensorFlow.

The compute capability of this device corresponds to 5.3, which means
that the device supports 16-bit floating point operations, which is the only
alternative to the default slower and less memory-efficient 32-bit floating
point operations.

The results presented in later sections were measured on a setup leverag-
ing the TensorRT framework with 16-bit floating point operations and batch
size of 16, as this combination was found to deliver the most efficient setup.
Furthermore, the device was configured to operate at 5W by disabling two
of its four ARM cores to better align with the other devices. Because the
network uses 16-bit precision, the input must be scaled to fit in the [0, 1)
range. This operation was, however, fused into the network and accelerated
by the GPU.

Intel Neural Compute Stick 2 The NCS2 device (described in more
detail in section 2.2) was connected to a Raspberry Pi model 3 [33], which
was used as a host for this accelerator. The host specifications, and the
physical dimensions and the interfaces of the NCS2 are shown in tables 3
and 4, respectively.

The NCS2 device was set up with the OpenVINO’s recommended settings
(described in detail in section 2.2.3), which include asynchronous executions
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CPU Quad-core ARM A57 @ 1.43 GHz
GPU 128-core Maxwell
GFLOPS 472
RAM 4 GB 64-bit LPDDR4 25.6 GB/s
Storage 64 GB SD card
Dimensions 100 x 80 x 29 mm
Mass 141 g

Table 2: Specifications of the NVIDIA Jetson Nano. The dimensions and
mass are based on the developer kit version.

with four independent inference requests and throughput performance hint.
As with the NVIDIA Jetson Nano, the 16-bit precision of the network

requires scaling to the range of [0, 1), which was also fused with the network
and executed on the accelerator.

CPU Quad Core Broadcom BCM2837 @ 1.2GHz
RAM 1 GB
Storage 32 GB SD card
Dimensions 100 x 80 x 29 mm
Mass 42 g

Table 3: Specifications of the Raspberry Pi model 3.

Interface USB 3.1, USB 2.0
Dimensions 72.5 x 27 x 14 mm
Mass 53.4 g

Table 4: Specifications of the Intel Neural Compute Stick 2.

CoralAI TPUs This family of devices leverages the CoralAI edge TPU
[34], which is a hardware accelerator created to accelerate machine learning
inference at the edge. It comes in multiple form factors, including:

• CoralAI Dev Board Micro [35] - an embedded device that uses the
Cortex-M7 (comparable to the one used in the first device) and the
Cortex-M4 cores. Unlike the rest of the devices in this family, this is
the only device that runs FreeRTOS [36].
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• CoralAI Dev Board Mini [37] - an embedded device that uses four
larger ARM Cortex-A53 cores. Additionally, this device provides more
memory and runs a fully-featured Mendel OS (Debian derivative) [38].

• CoralAI USB accelerator [39] - an accelerator with a form factor similar
to NCS2. This device does not have a dedicated host and can be
plugged into a dedicated host device (Raspberry Pi model 3 used to
ease comparison to the NCS2.)

The full specification of these devices are shown in tables 5 and 3.
These devices accept models trained in TensorFlow and compiled through

their dedicated compiler [40]. These devices only support 8-bit integer op-
erations. Therefore, all models used on these devices were quantized to this
precision. This also further reduces the latency by omitting the input rescal-
ing operation.

CoralAI Dev Board Micro CoralAI Dev Board Mini

CPU ARM Cortex-M7 @ 800 MHz,
ARM Cortex-M4 @ 400 MHz

Quad-core ARM
Cortex-A35 @ 1.5 GHz

RAM 64MB 2 GB
Storage 128MB NAND 8 GB eMMC
Dimensions 65.0 x 30.0 x 6.8 mm 64 x 48 x 14.6 mm
Mass 10.4 g 25.5 g

TOPS Interface Dimensions Mass

CoralAI USB accelerator 4 USB2 65 x 30 mm 4.3 g

Table 5: Specifications of the CoralAI Dev Board Micro and CoralAI Dev
Board Mini, as well as the CoralAI USB accelerator. The CoralAI Dev
Board Mini’s and CoralAI Dev Board Micro’s physical dimensions and weight
include the on-board TPU, and TOPS is teraoperations per second.

5.1.2 Workload

The workload for this test was modeled after a real-world application, which
consists of a land cover classification of satellite imagery. To simulate this ap-
plication, we perform a 5-class classification on RGB images of size 4512x4512
pixels.

Page 18 of 42



Techniques for increasing efficiency of Intel Neural Compute Stick 2

For this, we fine-tuned a MobileNetV1 model [41] on Flowers dataset [42].
MobileNet is a family of models, with the architecture specifically designed
for deployment at the edge. Even though there are newer versions in the
family of models, version 1 allows the user to scale the models’ size down
much further than the newer models, which is an important factor mainly
for testing the most resource-constrained devices under test. This model
can be scaled using the depth multiplier parameter, which adjusts the total
number of layers in the network. The available options of pre-trained models
are with the depth multiplier of 0.25, 0.5, and 1.0, all of which are included
in our tests.

The models were pre-trained on the ImageNet dataset [43, 44] and fine-
tuned on the Flowers dataset. Both of these datasets consist of RGB images
of size 224x224 pixels. To align with this expected input size, we divide the
4512x4512 pixel images into 400 patches of this size, which are inferred indi-
vidually. This step was also taken because inference on the full-sized image
would be prohibitively expensive and exceed most of the devices’ memory
requirements. Furthermore, this has a favorable side-effect since the classifi-
cation of the separate patches also acts as a coarse-grained image segmenta-
tion.

The results of the tests are reported as the average of 10 runs of classi-
fication of the 400 patches of the randomly generated 4512x4512 image and
include the preprocessing steps, including the division into patches except for
the Cortex-M7 microcontroller, which could only fit a single 224x224 pixel
image into memory and the CoralAI Dev Board Micro, which could only
fit quarter (100 patches) of the image into memory. The reported results
for these two devices are extrapolated to represent the inference of all 400
patches of the image.

The division of the image into patches is performed in a separate thread
on the host of the NVIDIA Jetson, using the inference request threads on the
host of the OpenVINO and synchronously in the main thread for all devices
accelerated by the CoralAI TPU.

The source code for the benchmark is available online 1.

1https://github.itu.dk/roba/Edge-benchmark
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5.1.3 Metrics

To compare the performance of these devices on the studied workload, we
use multiple time- and power-related metrics:

Latency Measures time to infer all of the 400 patches of the full-size image.
The results are reported in seconds.

Power consumption Measures the total amount of power consumed dur-
ing inference of the image. This shows the overall efficiency of the device as
the metric combines the latency and average power draw of the inference, as
shown in eq. (2).

E = P̄ (t/3, 600) (2)

The results for this metric are presented in milliwatt-hours (mWh).

Peak power draw Measures the maximum power draw of the device dur-
ing the inference of the image. This metric is essential for design considera-
tions of the power delivery for the device. The peak power draw is presented
in Watts (W).

The power consumption and the peak power draw were measured using the
Otii Ace Pro [45], a precision power supply and power analyzer.

5.2 Results

The results presented in this section show the latency, power consumption,
and the peak power draw of the devices during the inference of a full-size
image (400 patches) using models with increasing size (depth multiplier).

5.2.1 Latency

Figure 6 presents the per-image inference latency of the application-specific
workload described in the previous section. The results of the benchmark
vary based on the depth multiplier used to control the size of the model.

Even the smallest of the models posed high memory requirements for the
ARM Cortex-M7 microcontroller. The model with the depth multiplier of
0.25 was the only model that could fit on this device. Furthermore, even
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Figure 6: Latency of inference on a full-size image with different scaling
factors (depth multiplier = DM) of the MobileNetV1 model as measured on
corresponding devices. A batch size (BS) of 1 is used unless stated otherwise.

with the scaled-down model, the device is unable to hold the entire image
in memory and can, therefore, only process a single patch at a time. This
means that even if the device received the image already patched, the device
would have to rely heavily on external storage to fetch the input data before
an inference of each sample. This device’s low degree of specialization and
parallelism leads to 2 orders of magnitude higher latency than the rest of the
devices.

The NVIDIA Jetson Nano performs the inference using the smallest
model at the lowest latency. However, the device’s performance on this
workload deteriorates with the larger models due to its inefficient scalability.
After scaling to the model with the depth multiplier of 0.5, the device still
performs well while being surpassed only by the NCS2. Scaling to the largest
model, however, shows a significant decrease in performance, leading to the
highest latency of the devices that could perform the task.

The NCS2 showed improved scalability in comparison to the NVIDIA
Jetson Nano. Using the smallest model, the performance of this device was
surpassed only by the NVIDIA Jetson Nano while showing the lowest latency
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for inference using the model with a depth multiplier of 0.5. In the case
of inference using the largest model, the device achieves the second lowest
latency, surpassed by the CoralAI USB accelerator using the same Raspberry
Pi host, clearly showing the better scalability of this accelerator.

The CoralAI accelerators show the overall best scalability to larger mod-
els. They, however, show a considerable overhead, visible in the case of
the two smaller models, where the devices achieve lower performance than
the NVIDIA Jetson Nano or the NCS2. Overall, the CoralAI TPU hosted
by the most powerful CPU found in the Raspberry Pi shows the highest
performance, as the CoralAI Dev Board Micro and Mini suffer from larger
preprocessing overhead, connected to the division of the full-sized image into
the smaller patches, most notably visible in the case of very low power mi-
crocontroller hosting the CoralAI TPU on the CoralAI Dev Board Micro.

5.2.2 Power Consumption

While latency is an important metric for applications requiring real-time pro-
cessing, after the devices fulfill the maximum acceptable latency, the power-
related metrics become more important. The fig. 7 shows the power con-
sumption of the devices under test. This metric shows the power efficiency
of devices and can help decide between multiple devices in case multiple fulfill
the latency requirements of a workload at hand.

Even though the Arm Cortex-M7 microcontroller draws the least amount
of power on average, the high inference latency presented in fig. 6, leads to
higher power consumption for inference of the full-size image than any other
configuration of devices and models tested.

The low level of specialization of the NVIDIA Jetson Nano, in comparison
to purpose-built ASICs found in the NCS2 and CoralAI TPU, leads to higher
average power draw and, therefore also, higher power consumption during
inference. The device shows the worst power characteristics than the rest of
the device during inference using the two larger models while showing a power
consumption lower than the NCS2 during the inference using the smallest
model, caused by the significantly lower latency in this configuration.

In the two larger models, the NCS2 shows significantly lower power con-
sumption compared to the NVIDIA Jetson Nano. It, however, shows power
consumption significantly higher than the devices leveraging the CoralAI
TPU accelerator.

The devices leveraging the CoralAI TPU for acceleration of the workload
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Figure 7: Power consumption of inference on a full-size image with different
scaling factors (depth multiplier = DM) of the MobileNetV1 model as mea-
sured on corresponding devices. A batch size (BS) of 1 is used unless stated
otherwise.

show the lowest overall power consumption. The choice of host CPU highly
influences the average power draw of these devices. The fig. 7 shows an
inverse trend compared to the results shown in the fig. 6. The devices with
the less capable CPUs show better performance in this metric, while the
device hosted by the more powerful Raspberry Pi consumes significantly
more power during the inference of the full-size image, even though it can do
so in a shorter time. Additionally, we can see that even though the NCS2
achieved lower latency in two of the three configurations compared to the
CoralAI TPU hosted by the same device, the choice of the CoralAI TPU for
acceleration leads to significantly better characteristics.

5.2.3 Peak Power Draw

The devices running inference at the edge are met with a strict power budget,
as they most commonly draw power from batteries and are not connected
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power grid but rather rely on energy harvesting. An important consideration
when designing such a system is, therefore, power delivery. Figure 8 shows
the peak power draw of the devices during the inference.
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Figure 8: Peak power draw of of each device with MobileNetV1 model of
different sizes (depth multiplier = DM). A batch size (BS) of 1 is used if not
stated otherwise.

As mentioned earlier, the Arm Cortex-M7 draws a minuscule amount of
energy compared to the rest of the device. This, however, comes at the cost of
low performance. Furthermore, the figure shows that the high specialization
of the devices leveraging ASICs for acceleration leads to higher efficiency and
low peak power draw. The NVIDIA Jetson Nano, while providing a high
degree of parallelism, is less specialized than these devices and, therefore,
less efficient, with the peak power draw during the inference reaching up
to almost an order of magnitude higher than the highly specialized ASICs.
Furthermore, the newer architecture found in the CoralAI TPUs is more
efficient than the older architecture found in the NCS2, reducing the peak
power draw of these devices. These differences are even more pronounced
when paired with more efficient CPUs for hosting these accelerators.
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5.3 Discussion

Although the NCS2 does not provide the highest performance out of the
devices tested in most of the configurations, it bridges the gap between the
NVIDIA Jetson Nano, which, while providing the best performance for infer-
ence using the smallest model, fails to scale efficiently in comparison to the
more specialized devices, and the devices leveraging the CoralAI TPU, which
while providing the best scalability, mainly visible in the inference using the
model with the highest scaling factor, have a large overhead for the inference
using the smallest model.

On the other hand, the difference in performance between the Raspberry
Pi combined with the NCS2 and the CoralAI TPU accelerator is minor com-
pared to the efficiency differences between the two accelerators. The newer
architecture found in the CoralAI TPUs, leads to power consumption during
the inference of a sample up to 46% lower compared to the NCS2, including
the non-negligible power consumption of the host device.

6 In-depth Analysis of the Device and Cus-

tom Kernels

After benchmarking against other devices in the edge ecosystem, we con-
duct an in-depth analysis of the NCS2 and its performance. This will give
us a deeper understanding of the device’s inner workings. Furthermore, we
explore the viability of writing custom kernels and compare their perfor-
mance to the already available implementations in OpenVINO through mi-
crobenchmarks. Finally, we examine how the findings gained through these
microbenchmarks transfer to inference using a full-size deep neural network.

6.1 Methodology and Experimental Setup

In this section, we describe the methodology and experimental setup for the
analysis of the NCS2. Specifically, we describe the device under the test,
including the specific configurations used throughout the tests, describe the
workload used to examine the device, and finally, the metrics used to evaluate
the results of the benchmarks.

Page 25 of 42



Techniques for increasing efficiency of Intel Neural Compute Stick 2

6.1.1 Device under Test

To conduct these experiments, the NCS2 was hosted by a desktop machine
with specifications shown in table 6.

This is a machine running PopOS 22.04 [46], with the OpenVINO devel-
opment toolkit and the runtime running inside of a Docker container. The
NCS2 was attached to the desktop machine and the container through a
USB3.0 connection.

CPU 8-core Intel Core i7-4790 @ 3.6 GHz
L1d$ 128 KB
L1i$ 128 KB
L2$ 1 MB
L3$ 8 MB
RAM 32 GB DDR3L
Storage 512GB SATA SSD
USB 3.0, 5 Gbit/s

Table 6: Specifications of the desktop machine used as a host for the NCS2.

6.1.2 Workload

To gain a deeper understanding of the device at hand in addition to the
knowledge presented in section 2.2, we perform multiple microbenchmarks,
which test the performance and the scalability of the on-board Neural Com-
pute Engine.

The benchmarks focus on the performance of the NCS2 at running two
of the most common layers found in deep neural network architectures, the
fully connected layer and the convolutional layer, in isolation.

The weight matrix of the fully-connected layer is square such that the
input and output shapes remain the same. The layer was tested with config-
uration with input vectors of size 128, 256, 512 and 1024.

The convolutional layers are based on the VGG-11 architecture [47] and
mimic the first layer of the model (layer A) and a layer in the middle of the
model (layer B). The kernel and stride sizes of the layer were fixed to 3x3
and 1, respectively. These layers differ in the number of input and output
channels, with layer A accepting 3 channels and outputting 64 channels and
layer B accepting 64 channels and outputting 256 channels.
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The input to the convolutional layers is modeled after the CIFAR-10
[48] (small) and the ImageNet (large) dataset, with its size affecting the
computational requirements of both types of convolutional layers.

The results of these microbenchmarks further serve as a baseline for the
analysis of the performance of custom implementations of the fully connected
layer, written in OpenCL and run on the SHAVE cores of the NCS2 device.
Through these results, we assess how the incrementally added optimizations
of this operation (detailed description in section 4), commonly used in pro-
gramming massively parallel hardware, transfer to the SHAVE cores and how
they affect the performance.

Furthermore, we assess the performance of the underutilized batching
option on this device using the Neural Compute Engine and the OpenCL
kernels running on the SHAVE cores. In connection with this, we explore
the overheads attached to invoking the operations running on either of the
accelerators.

Both the fully connected layers and the convolutional layers were run with
randomly initialized weights on randomly generated input of varying sizes,
as the value of these does not affect the performance. The results of all of
the microbenchmarks are presented as an average of 1000 runs.

The inference of the samples was run synchronously in order to aid rea-
soning about the data transfer overheads.

Finally, we compare the findings gained through the microbenchmarks
to running of inference on full-size deep neural network models. The first
model is a feed-forward neural network with three fully-connected layers and
ReLU activations, accepting grayscale images of size 28x28, emulating a small
MNIST-like dataset [49].

In addition to the feed-forward neural network, we benchmark the device’s
performance on the Resnet-18 architecture, which accepts CIFAR-10-sized
RGB images of size 32x32. This model has 11,511,784 trainable parameters,
which is more than an order of magnitude higher than the 832,101 trainable
parameters of the MobileNetV1 with a depth multiplier of 0.5.

The results for benchmarks using these models show averages of 1000
runs. The inference of these samples was run asynchronously with four con-
current inference requests in order to show the best achievable performance.

Source code of these benchmarks is available online 2.

2https://github.itu.dk/roba/Master-thesis
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6.1.3 Metrics

To evaluate the performance of the device on the microbenchmarks as well
as on the benchmark running inference using full-size deep neural networks,
we use the following metrics:

Latency Reported in milliseconds (ms), this metric represents the time-
to-inference. This metric is used in cases where batching is not utilized.

Throughput Reported in samples per second, this metric represents the
total number of samples inferred in a time unit. Throughput is used to quan-
tify the results of the experiments utilizing batching.

The latency of the microbenchmarks without batching was collected on a
per-operation basis (referred to as operation latency) through the on-board
performance counters. In addition to the per-operation latency, we present
the total latency of the inference of a sample, including the transfer times to
and from the device. This latency was measured on the host using chrono.

The throughput of the microbenchmarks with batching was derived from
the time measured using the chrono utility, which includes the transfer times
to and from the device, as was the case for latency.

For the benchmark using the full-size models, we report throughput, mea-
sured the same way as in the case of the microbenchmarks.

In addition to the per-operation latency, the device also reports the time
spent waiting for input. These results were, however, omitted as they were
found to be unreliable.

6.2 Results

This section first presents the results of the performance analysis of fully-
connected and convolutional layers running on the Neural Compute Engine.
Then we present the results of the analysis of the custom OpenCL imple-
mentation of the fully-connected layer, after which we analyze the batched
versions of this layer on both the Neural Compute Engine and the SHAVE
cores. These results are then further analyzed to identify the overheads in the
parallelism of the SHAVE cores. Finally, we present the results of inference
using full-size deep neural networks to see how the findings gained through
the microbenchmarks transfer to real-world usage.
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6.2.1 Performance of the Neural Compute Engine
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Figure 9: The total and per-operation latency of (a) fully-connected layer
with varying input sizes and (b) convolutional layers A and B on small (sm)
and large (lg) datasets.

Figure 9a shows the total inference latency and the latency of the fully-
connected layer operation, using an input of varying sizes, running on the
Neural Compute Engine accelerator, as implemented in OpenVINO. The
latency of the fully-connected layer operation does not scale linearly in the
input shape but rather in the number of MAC operations, which can be
derived for a fully-connected layer as follows:

#MAC = M ·K ·N = K2 (3)

, where M is the batch size (in this case, 1), K is the common dimension
between the input and the weight matrices, and N is the new output shape,
which in the case of a square weight matrix equals the K dimension.

In addition to the latency contributed by the input shape, there is a
significant overhead in latency, amounting to 0.05 ms, which is close to the
whole operation latency of the fully-connected layer with an input shape of
128.

While the total latency also scales linearly with the number of MAC
operations, it is mostly composed of a significant overhead, amounting to
1.38 ms, representing most of the execution time. Most of this overhead
is the transfer time of both the weight matrix and the input vector, which
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would get amortized after the execution of multiple layers, or by use of data
transfer pipelining.

The fig. 9b shows the inference latency using a single convolutional layer
with varying configurations.

We can see significant differences caused by the increase in the input
size. Although the layers with small and large datasets use the same weight
matrix, the difference between the latencies of the layers using differing input
shapes is significant.

The number of elements in a weight tensor of a convolutional layer can
be derived as:

#W = Kx ·Ky · Cin · Cout (4)

, where Kx and Ky are the width and the height of the convolutional kernel
and the Cin and Cout the number of input and output channels, respectively.

Mainly in the case of layer B, the size of the weight tensor (147,456
elements) is not insignificant in comparison to the input sizes (4,096 elements
in the case of a small dataset and 200,704 elements in the case of a large
dataset). In the case of the small dataset, the transfer time of both the
weight tensor and the input tensors amounts to a maximum of 1.38 ms,
largely dominated by the transfer of the weight tensor. The weight tensor
represents 42% of the total transfer size for the larger dataset, and the data
transfer should, therefore, only take 3.29 ms, presenting a discrepancy.

This effect can be attributed to the image-to-column operation, com-
monly used in a two-step convolution implementation, where the first step
includes the image-to-column operation, followed by matrix multiplication.
This operation unrolls the sliding window of the convolution over time,
thereby significantly increasing the memory requirements.

6.2.2 Performance of the Custom Implementation of the Fully-
connected Layer

Section 4 presents how the fully-connected layer is implemented and possible
optimizations of this operation commonly used when programming massively
parallel hardware such as GPUs. This section presents the results of a custom
implementation of the fully-connected layer running on the SHAVE cores,
which leverages these optimizations.

Naive implementation Figure 10a presents the total inference latency
and the latency of the fully-connected layer kernel, processing a single sample.
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This is a näıve implementation that does not leverage shared memory within
work groups but relies on data accesses into the global DRAM memory. This
implementation, however, does perform coalesced access.
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Figure 10: Analysis of the performance of the näıve implementation of the
fully-connected layer using (a) work group size of 1 and (b) input shape of
128 with varying work group sizes.

This implementation performs much worse than the default implementa-
tion on the Neural Compute Engine. While the inference using the smallest
size is close to the latency of the inference using the Neural Compute Engine,
this implementation has unfavorable scaling. As the input size increases,
the total inference latency becomes dominated by the latency of the fully-
connected layer operation. As was the case in the implementation running
on the Neural Compute Engine, this implementation also scales linearly with
the number of MAC operations, with the total latency including an overhead
of similar size.

Figure 10b shows the effect of the work group sizes on the performance.
As the näıve implementation does not use the collaboration between work
items within a work group, the latency does not improve with the increase in
the size of the work groups. It rather has a negative effect, as the work items
within the same work group are executed sequentially on a single SHAVE
core, as mentioned in section 2.2.2.

Tiling This implementation uses tiling, which in the case of the matrix-
vector multiplication, increases the computational intensity for the input
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vector through data reuse between work items within a work group while
not changing it for the weight matrix due to the operation being parallelized
only in a single dimension.
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Figure 11: Analysis of the performance of the tiled implementation of the
fully-connected layer using (a) work group size of 8 and (b) input shape of
128 with varying work group sizes.

Figure 11a shows the improvement in latency this optimization leads to.
Specifically, this figure presents the results of the tiled implementation using
the tile size of 8. The latency of the fully-connected layer operation drops by
35− 62% compared to the näıve implementation.

Figure 11b shows the effect of increasing the size of the work groups or
the tiles (same in this implementation). Since this implementation leverages
the collaboration between the work items within a work group, the size of
the work groups has a large effect on the performance of the kernel. The
performance increases with the increase in tile size until reaching tile size of
8. Past this point, the performance fluctuates. The performance peaking at a
tile size of 8 might be attributed to the automatic vectorization the compiler
applies when coalesced access is detected within a work group. The MAC
operations can be processed in vectors containing 8 half-precision floating-
point operators, leading to parallel execution of the work group.

Vectorized implementation As mentioned, the SHAVE cores support
vector instructions. Figure 12 show results of custom implementation using
manual vectorization.
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Figure 12: Total and per-operation latency of the vectorized implementation
of the fully-connected layer running on SHAVE cores.

We could not improve on the tiled implementation and the automatic vec-
torization applied by the compiler. We can see a slight performance decrease
compared to the tiled version.

6.2.3 Batching

This section explores batching, a technique used to increase the throughput
of machine learning training and inference. We first build upon the custom
implementation running SHAVE cores presented earlier and compare it to
the performance of the non-batched versions. Then we explore the effect
of batching on the performance of the operations running on the Neural
Compute Engine.

Fully-connected layer using Shave cores As we alluded to before, the
matrix-matrix multiplication (batched) implementation of a fully-connected
layer brings multiple theoretical advantages over the non-batched matrix-
vector multiplication. This is mainly the possibility of using the second
dimension for parallelizing the operation and therefore gaining on data reuse
not only in the case of the input data but also in the weight matrix.

Figure 13 shows the throughput of the batched fully-connected layer,
implemented as a matrix-matrix multiplication, leveraging most of the opti-
mizations we mentioned in section 4, including tiling in two dimensions (tile
sizes of 16x16 or 32x32), increase in the amount of work per work item (8
elements per work item), coalesced access for all accesses to global DRAM
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Figure 13: Analysis of batched custom implementation of the fully-connected
layer with input shape of (a) 128 and (b) 256, running on the SHAVE cores.

memory and register tiling.
These results present the cases with image shapes up to 256 and batch

sizes of 16, 32, and 64, which must be higher than the tile size. Although
smaller tile sizes were tested, these need to be of the same size or larger than
the number of elements processed by a work item. This number of elements
processed by a work item was set to 8 to decrease the total number of work
items spawned, as without it, the NCS2 crashes and stops responding.

In comparison to the fastest tiled implementation presented in the last
section, this batched implementation is at least 61% slower in the case of the
input shape of 128 and 82% slower in the case of the input shape of 256.

This slowdown and the costs associated with the increase in parallelism
on the SHAVE cores will be explored in detail in section 6.2.4.

Fully-connected layer using Neural Compute Engine Section 6.2.1
pointed to the fact that the large portion of the operation latency of the fully-
connected layer consists of a constant overhead. Here we explore whether we
can take advantage of this fact and pay this constant overhead only once for
larger batch sizes.

Figure 14 shows the total inference throughput and the operation through-
put of the fully-connected layer with varying batch and input sizes. The
overall trend points to the layers with smaller input sizes taking better ad-
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Figure 14: The total and per-operation latency of fully-connected layer with
input shape of (a) 128, (b) 256, (c) 512 and (d) 1024; running on the Neural
Compute Engine.

vantage of the batching. The layer with the input shape of 128 leads to a
significant increase in throughput up to the batch size of 32, after which the
performance starts tapering off. This effect of the performance tapering off
is seen earlier as the input size increases. In the case of the input shape of
1024, we see negligible performance gains from increasing the batch size.

A similar positive effect can also be seen in the total inference through-
put. The total inference latency of the non-batched version was shown to be
composed of a large overhead, which we also take advantage of here. The
total inference throughput shows even better scalability than the operation
latency, the effects of which can be seen even in the case of the highest input
shape tested.
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Convolutional layer using Neural Compute Engine Figure 15 show
the effect of batching on the performance of the convolutional layers running
on the Neural Compute Engine. The figures show that while batching does
not have a positive nor negative effect on the throughput using the larger
dataset (figures 15c and 15d), a positive effect can be seen for the smaller
dataset (figures 15a and 15b).

0

5000

10000

15000

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Batch size

Total Operation

(a) Layer A, small dataset

0

5000

10000

15000

1 2 4 8 16 32
Th

ro
ug

hp
ut

 (s
am

pl
es

/s
)

Batch size

Total Operation

(b) Layer B, small dataset

0
50

100
150
200
250

1 2 4

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Batch size

Total Operation

(c) Layer A, large dataset

0

100

200

300

400

1 2 4 8 16

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Batch size

Total Operation

(d) Layer B, large dataset

Figure 15: The total and per-operation latency of convolutional layer in
multiple configurations, representing (a) layer A using small dataset, (b)
layer B using small dataset, (c) layer A using large dataset and (d) layer B
using large dataset; running on the Neural Compute Engine.

The largest effect on the operation throughput can be seen in layer A,
which increases by up to 48%. The total throughput increases significantly
for both layers using the small dataset, where the throughput was up to 2x

Page 36 of 42



Techniques for increasing efficiency of Intel Neural Compute Stick 2

as high as the non-batched version in the case of layer A and up to 4x as
high in the case of layer B.

6.2.4 Overhead of parallelism in SHAVE cores

As mentioned in section 2.2.2, there is a total of 16 SHAVE cores on the
device, which each map to a single work group, executing these work groups
in parallel if enough cores available. Furthermore, the work items within
these work groups are executed sequentially on the SHAVE core assigned to
the work group.
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Figure 16: (a) Shows the overhead of spinning multiple work groups with
one work item per group (executed on separate cores). The number of work
items is displayed for a single dimension. The second dimension is fixed to
128 work items. (b) Shows the effect of number of work items per work group
with a set number of total work items (2048).

To test the overhead attached with executing multiple work groups/items
in parallel, we replaced the kernel for fully-connected layer with the one that
does not contain any instructions, but mimics this operation in the size of
work groups and the number of total work items.

Figure 16a shows the latency for executing multiple work groups of size
1. This size of the work groups means that every work item is executed on
a separate SHAVE core. The figure shows the number of work items in the
first dimension, while the number of work items in the second dimension was
fixed to 128, emulating an increasing batch size with vectors of size 128.
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We can see that the increase in parallelism comes at a high cost. For
the configuration emulating the batch size of 16, the overhead of the parallel
execution is almost 8x higher than the operation latency of executing fully-
connected layer on batch size of 16 using the Neural Compute Engine.

A reduction in parallelism on the device is possible through increase in
work group size, which scales the number of total work groups down by their
size. Figure 16b shows the effect of this for the case emulating the batch size
of 16. We can see that the overhead associated with the parallelism decreases
until the work group sizes of 8x8. This size reduces the number of groups in
the larger dimension down to 16, which is the total number of SHAVE cores,
allowing the whole dimension to be executed in parallel. Even though this
reduces the number of work groups significantly, it is not able to close the
gap between the overhead of the SHAVE cores and the execution time on
the Neural Compute Engine.

6.2.5 Performance on Full-size Models

This section first shows the impact of batching and data transfer pipelining
on inference using a feed-forward neural network, which builds on the mi-
crobenchmarks using the fully-connected layers. Then we present results for
inference using the ResNet-18 architecture, a convolutional neural network
comprised of both the convolutional and fully-connected layers.

Feed-forward neural network Figure 17a shows the throughput of the
feed-forward neural network with increasing batch size. This figure largely
follows the results for the batched inference using a single fully-connected
layer presented in section 6.2.3. Since this neural network is comprised of
multiple fully-connected layers and ReLU activation layers, which get fused
with the preceding fully-connected layers, the effects presented earlier accu-
mulate.

The fig. 17b shows the inference latency for the entire batch. Specifically,
it shows the latency of the execution of all of the operations of the neural
network and the total inference time, including the data transfers and the
time data sits in the queue on the device. This figure shows that, especially
for the smaller batch sizes, the execution time of all operations is significantly
lower than that of the total inference latency. This means that even with
multiple pipelined inference requests, we cannot feed the device with data

Page 38 of 42



Techniques for increasing efficiency of Intel Neural Compute Stick 2

0
2000
4000
6000
8000

10000
12000

1 2 4 8 16 32 64Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Batch size

(a)

0.3 0.3 0.5 0.9
0
5

10
15
20
25

1 2 4 8 16 32 64

La
te

nc
y 

(m
s)

Batch size

Operations Total

(b)

Figure 17: (a) Shows the effect increasing the batch size has on the through-
put of the feed-forward neural network. (b) Shows the operation latency for
a single batch and the average total inference time.

fast enough. This results in most of the latency being spent waiting for input
until reaching higher batch sizes.

Resnet-18 Unlike the previous example, this does not follow the results
presented earlier, as the convolutional layers have significantly different char-
acteristics from the ones tested in section 6.2.3 and vary in kernel and stride
sizes efecting their computational and memory requirements. As shown in
fig. 18a, the throughput of the ResNet-18 model scales very linearly.

Figure 18b shows that unlike in the case of the feed-forward neural net-
work, the execution time of the ResNet-18 model reaches half of the total
inference latency of a batch. This, however, does not mean that the other
half of the inference latency can be attributed to an inability to feed the
device with data fast enough, but rather the contrary. This is the time the
inference request sits in a queue on the device, waiting to be processed.

6.3 Discussion

SHAVE cores The results presented in this section show that the per-
formance delivered by the Neural Compute Engine hardware accelerator is
superior to the performance of the SHAVE cores. Using the SHAVE cores
comes at the cost of a high overhead attached to parallelism. These units,
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Figure 18: (a) Shows the effect increasing the batch size has on the through-
put of the Resnet-18 neural network. (b) Shows the operation latency for a
single batch and the average total inference time.

however, provide far better extensibility and flexibility, which can accommo-
date the rapid pace of development in new neural network architectures and
the layers that build them up.

While the use of the fully-connected layer on the SHAVE cores is not
representative of real-life usage, it provided many opportunities to show the
impact of the different optimizations and had a firm baseline for performance
in the form of the fully-connected layer implemented on the Neural Compute
Engine.

We showed that not all layers are suitable for deployment on this device.
There is a need to identify the characteristics that make up a good candidate
for acceleration by this device.

Furthermore, even though the Neural Compute Engine does not allow
for operations other than with 16-bit floating point precision, the SHAVE
cores contain integer register files and arithmetic units, which, together with
the vector register files and arithmetic units, could be used to optimize the
inference using novel layers by leveraging mixed-precision model, with the
SHAVE-core executing the reduced precision operations.

Neural Compute Engine This accelerator’s high degree of specialization
delivers significant performance improvements at the cost of reduced flexibil-
ity. While the microbenchmarks leveraging the convolutional layers modeled
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after the VGG-11 architecture did not significantly improve with increasing
batch size, the ResNet-18 architecture did. We attribute this effect to the
differences in the shapes of the kernels and the stride sizes, as these impact
the memory requirements and latency of convolutional layers performed us-
ing the image-to-column operation. This topic requires further research to
identify the best characteristics of these layers for running on the Neural
Compute Engine accelerator.

The benchmarks using the full-size models show promising performance
with the increasing batch size and leveraging the asynchronous execution
and data transfer pipelining. Mainly in the case of the feed-forward neural
network, we can see the potential for further optimization. The device is un-
derutilized as the host is not able to saturate the device with input data. An
increase in the number of concurrent inference requests could potentially help
mitigate this issue. Since the number of inference requests can be changed
at the runtime, the time spent waiting for the input could be monitored,
and the number automatically adjusted. The limitations of the concurrent
inference requests have to be explored further, however.

Furthermore, these benchmarks show performance on small datasets like
CIFAR-10 and MNIST. This size was chosen based on the performance and
scalability with respect to the batch size presented in the microbenchmarks.
Change to a larger dataset, such as the ImageNet, could break the scalability.
This, however, requires further experimentation.

7 Conclusion

This paper presented our work on the characterization of the performance
and possible optimizations of the Intel Neural Compute Stick 2. We first de-
scribed the device and the OpenVINO toolkit used for optimization and run-
ning of inference using this device and characterized the process of extending
the device’s functionality through custom OpenCL kernels running on the
SHAVE cores of the device. Furthermore, through the use of application-
specific benchmarks, we characterized the latency and power characteristics
in comparison to other devices used to accelerate edge applications. We
found that the device provides a superior ratio in latency and power draw
in comparison to less specialized devices, such as an ARM Cortex-M7 mi-
crocontroller or the NVIDIA Jetson Nano. On the other hand, the devices
leveraging the newer architecture found in CoralAI edge TPUs, provide sim-
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ilar latency at lower power draw and power consumption.
After the benchmark against the other devices, we proceeded to test the

device in isolation to analyze potential optimizations we can leverage in or-
der to increase the efficiency of the device. First, we set the baseline of the
device’s performance on fully-connected and convolutional layers using the
Neural Compute Engine. Then we presented the performance of the cus-
tom OpenCL kernels for fully-connected layer running on the programmable
SHAVE cores, and the optimization we leveraged, and their effect on the
performance. We found that parallelism on this accelerator is attached to
large overheads. The performance of these custom kernels cannot match the
performance of the implementation on the Compute Neural Engine, and the
gap between the performance widens with the increase in parallelism caused
by larger matrix sizes. We found that this device should only be used in the
cases in which the operations needed do not come with OpenVINO and are
mission-critical.

Furthermore, we identified that the underutilized option for batching on
the Neural Compute Engine can deliver significant improvements in perfor-
mance by amortizing the overheads of initialization of the operations and the
data transfers.

Finally, we quantified the effects of the batching and asynchronous execu-
tion using multiple concurrent inference requests on inference using full-size
neural networks. We found that the positive effects of batching accumulate
within the larger models and lead to higher performance gains than when
executed in isolation.
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