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Abstract
In recent years, the algorithmically-driven exposure to information on digital platforms has

fuelled concerns about polarized digital communities. As a consequence, the analysis and quan-

tification of political polarization has attracted immense interest across scientific disciplines.

However, the polarization measures used in prior research only partly capture the concepts

under investigation. I argue that a stronger focus on social connections that foster homophily is

needed and that theoretically justified measures of political polarization should take the network

of interpersonal interactions into account. To address this task, the thesis first discusses and

identifies appropriate measures for quantifying polarization in social media networks and subse-

quently applies them to a large-scale Twitter data set. As part of the research design, I collect

approximately 140 million tweets discussing Covid-19 which were posted by US-based Twitter

users in between February 2020 and July 2020. By leveraging computational methods including

transfer learning and network science tools, I conduct an exploratory analysis of ideological and

affective polarization in the Covid-19 debate on Twitter. I find that both types of polarization

were low in early February 2020 and then increased to moderately high levels in the following

months before reaching very high levels in July 2020.
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Part I

SCIENTIFIC ARTICLE

1 Introduction
Researchers, politicians, and journalists have widely discussed the issue of political polarization

in the recent past. For the conceptualization of polarization, both the increasing extremity

of ideological views as well as the structure of the interactions between individuals matter

(Baldassarri & Page, 2021). When people only associate with others whose views they share,

homogeneous and polarized communities emerge (Baldassarri & Page, 2021). Depending on

what drives these in-group versus out-group dynamics, the literature distinguishes between two

types of polarization (Wilson et al., 2020). Ideological polarization refers to opposing ideological

views among partisans; and affective polarization is concerned with the affective attitude towards

others (Wilson et al., 2020).

In this paper, I use the conceptualization outlined above to identify appropriate measures of

ideological and affective polarization in social media networks. Moreover, I show that these

measures outperform other popular approaches to quantifying polarization. In a case study of the

debate about Covid-19 restrictions, I apply these measures to a large-scale data set comprising

tweets posted by Twitter users over the course of half a year in 2020.
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The exploratory analysis of this data set shows that both ideological and affective polarization

were low in early February 2020 when Covid-19 was not yet a broadly discussed topic. In the

following weeks, the Twitter debate became both ideologically and affectively polarized and I find

moderately high levels of both types of polarization. I observe a peak in ideological polarization

in mid-April 2020, at a time when policies regarding face masks were changing. The highest

levels of affective polarization in the Twitter data set are reported in July 2020 which coincides

with an intense public debate about whether to reopen schools after the summer break.

2 Literature Review
Political polarization is an umbrella term that covers a range of different concepts which are

often understood along two axes: ideology and affect (Kubin & von Sikorski, 2021).1 As the

name suggests, ideological polarization refers to increasing differences in the ideological leaning

among individuals and political elites. The literature conceptualizes ideological polarization

as follows: on the one hand, it is understood as the placement of individuals on an ideological,

e.g., liberal–conservative scale, or a partisan scale involving parties on the political spectrum

(Abramowitz & Saunders, 2008; Fiorina & Abrams, 2008). When partisans move towards the

opposing ends of those scales, ideological polarization increases (Abramowitz & Saunders, 2008).

On the other hand, ideological polarization can refer to increasing differences in policy stances

(Fiorina & Abrams, 2008). The opinions that people hold regarding political and social issues,

such as immigration or labor market policies, indicate to what extent society is ideologically

polarized. Both partisan identity and policy stances are related, but it is important to point out

that the term ideological polarization can refer to either, or both, of these processes (Kubin &

von Sikorski, 2021).

Affective polarization describes the affective attitude towards like-minded and disagreeing others

and it is thus concerned with in-group versus out-group dynamics (Druckman & Levendusky,

1Note that a further distinction is sometimes made between the polarization of political elites (elite polarization),
or society at large (mass polarization) (Carothers & O’Donohue, 2019). Since the measures proposed here can be
equally applied to elite and mass discourses and the case study focuses on the micro-blogging platform Twitter
where private users and political elites discuss in a digital public space, I do not distinguish between elite and
mass polarization here.
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2019). The concept refers to either in-group favoritism, out-group hostility, or both affective

reactions taking place simultaneously (Iyengar et al., 2012). While there is widespread consensus

that affective polarization has increased over the last decades (Iyengar et al., 2019; Mason, 2016),

it is disputed whether in-group favoritism or out-group hostility is the main driver of this

development. For instance, Iyengar et al. (2012) argue that in-party affection has only slightly

changed in the United States since the 1980s while out-party dislike has increased steeply.

Conversely, Park et al. (2021) conclude that affective polarization is mainly driven by in-group

favoritism rather than out-group hostility.

Recently, the relation between ideological and affective polarization has attracted scholarly atten-

tion and several competing explanations have emerged. First, partisan identity is said to reinforce

affective polarization (Dias & Lelkes, 2022). When the identificationwith a political party becomes

fundamental to the perception of one self and others, this can fuel hostility directed towards polit-

ical adversaries (Dias & Lelkes, 2022). Second, stark ideological disagreements might strengthen

animosity towards other parties and their voters (Lelkes, 2021; Orr & Huber, 2020; Webster &

Abramowitz, 2017). According to these explanations, ideological polarization reinforces affective

polarization. However, other studies argue that it is in fact affective polarization that drives

ideological polarization. Druckman et al. (2021a, 2021b) for instance show that pre-pandemic

out-party hostility shapes the subsequent pandemic-related beliefs and practices that individuals

develop. To conclude, the direction of the relation between ideological polarization and affective

polarization is disputed and several explanations including mutual reinforcement between the

two types of polarization are possible (Baldassarri & Page, 2021).

2.1 Traditional Measures of Political Polarization

Traditionally, surveys such as the American National Election Survey are used to measure the

two types of polarization (Iyengar et al., 2019). To quantify ideological polarization, survey

respondents are asked to indicate how liberal or conservative they are, which party they usually

vote for, or what opinion they hold regarding different political issues (Kubin & von Sikorski,

2021). When those ideological leanings diverge strongly, ideological polarization is high.
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A survey-based measure of affective polarization not only includes the ideological leanings of the

survey respondents, but also how they feel towards others holding similar or opposing views

(Iyengar et al., 2012). For instance, participants are asked to rate how they feel towards the

out-group on a ‘feeling thermometer’ that ranges from 0 (very cold) to 100 (very warm) (Iyengar

et al., 2012). Other approaches include ‘social distance’ measures that ask respondents to indicate

whether they would want to have a colleague, neighbor, be friends with, or marry someone with

an opposing ideological leaning (Druckman & Levendusky, 2019). Furthermore, respondents

might indicate how much they trust their in-group versus out-group and which stereotypes or

traits, such as intelligence, independence, selfishness, or ignorance, they associate with them

(Druckman & Levendusky, 2019). Affective polarization is considered to be high when there is a

clear difference between the in-group versus out-group feelings reported by the participants.

Although surveys have been predominantly used to measure political polarization, it is important

to note that these approaches are subject to several shortcomings (Iyengar et al., 2019). For

example, the external validity of surveys is low and the survey responses might differ from the

respondents’ real-world behavior when interacting with their in-group versus out-group (Iyengar

et al., 2019; Lelkes, 2021). Moreover, survey instruments are reactive and the results might thus

be influenced by the framing of the questionnaire items (Iyengar et al., 2019). As recent research

shows, this is especially problematic for the quantification of affective polarization (Druckman &

Levendusky, 2019). Survey participants consistently overestimate social identities and cleavages

along party lines both with regards to their in-group (Vandeweerdt, 2021) and their out-group

(Ahler & Sood, 2018). For example, Ahler and Sood (2018) show that respondents estimate that

31.7% of Democrats belong to the LGBTQ+ community although the actual share is 6.3%. In

another example, respondents estimate that 38.2% of Republicans earned over $250,000 per year,

whereas the real fraction is 2.2.%.

2.2 Political Polarization on Social Media

The findings outlined above emphasize that survey-based measures need to be interpreted

cautiously and that more information on actual behavior among and towards partisans is needed.

As a consequence, recent research has turned to behavioral trace data collected on social media
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platforms. A small number of studies have attempted quantifying affective polarization in social

media data by investigating the sentiment expressed towards other users (Marchal, 2022; Mentzer

et al., 2020; Tyagi et al., 2021; Yarchi et al., 2021). The lexica underlying sentiment analysis tools

specify, for instance, that ‘happy’ has a positive valence while ‘sad’ has a negative valence. The

tool calculates the overall sentiment of a sentence by taking rules such as negation into account

(Marchal, 2022; Tyagi et al., 2021). Affective polarization is then measured as the difference

between the sentiment directed towards the in-group versus the out-group.

A second strand of research investigates ideological polarization on social media (e.g. Barberá,

2015; Cinelli et al., 2021). The most recent studies have focused on ideological polarization in the

Covid-19 debate on digital platforms, in particular on Twitter. All studies find that the Twitter

debate regarding Covid-19 was ideologically polarized: J. Jiang et al. (2020) show that liberal

and conservative Twitter users mostly engage in separated communities and that partisanship is

an indicator of support towards the administration at the time. Similarly, Simchon et al. (2022)

report that Twitter users communicate partisan opinions in the Covid-19 debate. In relation to

face masks, Lang et al. (2021) conclude that the majority of users in their sample support face

masks and that the debate between pro-mask and anti-mask users was emotionally charged. The

remaining studies focus on the vaccination discourse and find that this topic led to especially

high levels of ideological polarization (X. Jiang et al., 2021; Reiter-Haas et al., 2022). Conservative

Twitter users express themselves more skeptically towards vaccines, while liberal users tend to

show higher trust in vaccination and the medical field in general (X. Jiang et al., 2021; Reiter-Haas

et al., 2022). These findings are in line with survey-based research examining polarization of the

Covid-19 debate which confirms that the beliefs held by individuals differ along ideological lines

(Bernacer et al., 2021; Bruine de Bruin et al., 2020; Druckman et al., 2021a, 2021b; Green et al.,

2020; Kerr et al., 2021; Pennycook et al., 2021).

3 Research Objectives
As outlined above, the conceptualization of ideological and affective polarization is based on the

idea that the connections between individuals and the affective attitudes they hold play a central
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role. Although social ties are at the center of the conceptual understanding of polarization, the

measures proposed in prior studies do not always explicitly account for them. For example,

studies that solely focus on the distribution of ideological views or hostile attitudes fail to capture

any information on the social ties between the individuals which are considered in the analysis.

It follows that a theoretically justified quantification of ideological and affective polarization

needs to take the social connections between individuals into account. I argue that methods of

social network analysis are well suited for this task. In a network representation, individuals can

be modelled as nodes and the social relations between them can be represented as edges. Since a

network perspective on political polarization can suitably capture the ideas that underlie the

understanding of the concepts at hand, the first research question asks:

RQ1: How can ideological and affective polarization be quantified in a social network?

Turning from polarization measures to their application, I note that there is a gap in the literature

on polarization in the Covid-19 debate on social media. The studies discussed above exclusively

focus on ideological polarization but they do not analyze affective polarization. Since only

investigating one type of polarization provides an incomplete picture of the online polarization

dynamics in the Covid-19 debate, the second research question addressed here is:

RQ 2: How do ideological and affective polarization develop in the US-based Twitter

debate over time?

4 Operationalization and Methods
Since RQ1 focuses on quantifying ideological and affective polarization in social networks, I

start this section by introducing basic network-related terms (see Figure 4.1). In a social network,

each individual is modelled as a node and their social ties are represented as edges. Figure 4.1(a)

shows a simple graph consisting of two nodes and one edge connecting them, while (b) is an

example of a directed network in which the arrow indicates the direction of the connection. In

order to model the ideological leaning of each individual in the network, node attributes are used
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as shown in (c) where blue reflects liberal individuals and red indicates conservative individuals.

Moreover, edge attributes are assigned to model how favorable (dashed line) or hostile (solid line)

the ties between the individuals are.

(a) (b)

(c) (d)

Figure 4.1: Basic network representations. Individuals are nodes (circles) and their relations are edges
(lines). (a) undirected network, (b) directed network, (c) undirected network in which the
node color reflects ideological leaning (blue for liberals, red for conservatives), (d) undirected
network in which the edge pattern reflects favorability (dashed line) or hostility (solid line).

4.1 Ideological Polarization

Ideological polarization refers to an increasing gap in the ideological positions held by individuals,

as well as the clustering of those individuals in communities of like-minded others (Baldassarri

& Page, 2021). In previous work, we have identified relevant dimensions which a measure of

ideological polarization should take into account (Hohmann et al., 2022). Below are the two

dimensions which I focus on here:

1. The ideological dimension: Figure 4.2(a) illustrates a non-polarized setting with many

moderate and only a few strongly partisan leanings (in the left plot); and a polarized

environment with many and opposing partisan views (in the right plot).

2. The structural dimension: Figure 4.2(b) shows an example of a non-polarized network in

which all individuals are randomly connected and there are no communities (on the left)

and a network which fosters polarization as it is split into several separated clusters (on

the right).
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Figure 4.2: Two dimensions of ideological polarization (adapted from Hohmann et al., 2022). (a) Ideo-
logical dimension: the plots show the distribution of ideological leanings on a scale from
liberal (−1) to conservative (+1). (b) Structural dimension: users are represented as nodes
and connected by an edge if they interact on social media. Node color reflects the users’
ideological leaning (blue for liberals, red for conservatives).

The goal of the Twitter analysis is to compare the ideological polarization over the course of

six months and I therefore need a measure that can be easily compared across many networks.

Among the measures that condense the ideological polarization of a network into a numerical

score, I choose the Generalized Euclidean Polarization Index to measure ideological polarization

(Hohmann et al., 2022). This measure captures the distance between all agreeing and disagreeing

nodes in a network. The formal definition of the measure and details on its properties are

provided in the Companion Paper Section 8.

4.2 Ideological Polarization Measure: Experiments

To demonstrate how the Generalized Euclidean Polarization Index can be interpreted and how it

outperforms other comparable measure, I repeat variations of some of the experiments presented

in earlier work (Hohmann et al., 2022). In particular, I focus on the Assortativity Coefficient

which quantifies to what extent the users across a network are directly linked to like-minded

others (Mønsted & Lehmann, 2022). Moreover, I take the RandomWalk Controversy measure
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into account which quantifies how well connected two communities are by simulating random

walks between them (Garimella et al., 2018).

Ideological Dimension. The results of the first experiment are shown in Figure 4.3. Here,

I generate a random network with no community structure. In a random network, all nodes

can randomly connect to one another and, based on the network structure alone, I expect the

polarization to be low.

0

100

200

300

400

500

600

700

-1 -0.5 0 0.5 1

# 
U

se
rs

-1 -0.5 0 0.5 1

1.56 3.43

-1 -0.5 0 0.5 1

Ideological Leaning

Generalized Euclidean
Polarization Index

Assortativity 
Coefficient

6.02

-0.017 -0.018 -0.017

0.055 0.064 0.052Random Walk
Controversy

(a) (b) (c)

Figure 4.3: The ideological dimension. The first row shows the distribution from which user leanings
were drawn. The other rows specify the values of the different measures compared here.
All values are calculated based on a random graph with n = 100 nodes and approximately
m = 340 edges as well as the respective distribution of leanings as shown in the first row.
The values reported are averages over 100 iterations of the experiment.

Figure 4.3(a) then starts with a normal distribution of ideological leanings, which gets more

polarized from 4.3(b) to 4.3(c). The Generalized Euclidean Polarization Index captures this

change appropriately since it grows over (a)-(c). In contrast, the Assortativity Coefficient and

the Random Walk Controversy measure cannot account for the change in the distribution of

ideological leanings.

Structural dimension. For the second experiment, I generate three networks with different

topologies but the same number of nodes and edges as before. In Figure 4.4(a), the network

structure is random and, as in the previous experiment, there are no clearly distinguishable

communities. In Figure 4.4(b) communities emerge and they get increasingly separated in 4.4(c).

I therefore expect the ideological polarization score to grow from (a) to (c). The distribution

of node leanings is similar to the right-most histogram in the previous figure and it is fixed for

all three networks shown below. Based on the results, I conclude that all three measures can
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capture the structural polarization dimension as expected. In summary, these experiments show

that the Generalized Euclidean Polarization Index is the only measure that suitably captures and

distinguishes between both dimensions of ideological polarization.

6.11 22.23Generalized Euclidean
Polarization Index

Assortativity 
Coefficient

53.15

0.0 0.95 0.98

0.05 0.61 0.76Random Walk
Controversy

(a) (b) (c)

Figure 4.4: The structural dimension. The first row shows three stochastic block models with n = 100
nodes and approximately m = 340 edges each. In (a)-(c), the communities in the network
become increasingly separated. The bottom rows show the values of the three measures
compared here. The values reported are averages over 100 iterations of the experiment.

4.3 Affective Polarization

Similar to the previous section, I define two dimensions of affective polarization that a network-

based measure should be able to account for. As noted in the literature review on affective

polarization, the concept can either refer to favoritism among agreeing individuals, hostility

among disagreeing individuals, or both. Since hostility-based measures are predominantly used

in other studies (see e.g. Bougher, 2017; Druckman et al., 2021a), I choose to focus on hostility

here. However, the measure proposed below could be easily adjusted to include favorability or

combine both.

1. The interplay between ideological difference and hostility: Figure 4.5 exemplifies the

relationship between (dis)agreement and hostility in the user interactions. If there is no

relation between the ideological difference and the hostility directed at another user, then

the affective polarization is low. If agreement correlates with low levels of hostility and

disagreement correlates with high levels of hostility, then affective polarization is high.

10
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Figure 4.5: Dimensions of affective polarization. (a) Interplay between ideological difference and hostil-
ity: the scatter plots show how these variables can be correlated. (b) Structural dimension:
users are randomly connected in the left graph, whereas there are distinguishable communi-
ties in the right graph.

2. The structural dimension: In the left network, there are no communities and users therefore

have the chance to observe many other (dis)agreements and their related hostility levels

around them. I expect affective polarization to be comparatively low in this case. If,

however, users are embedded in separated communities and thus only surrounded by

agreeing others whose interactions are not hostile, this might reinforce their feelings

towards the in-group versus out-group, and affective polarization is therefore high.

Many survey-based studies of affective polarization rely on a Pearson correlation coefficient

to measure how hostile respondents feels towards others with opposing ideological leanings.

However, a Pearson correlation coefficient cannot capture any topological information about

the network. I therefore use the recently introduced Pearson correlation for complex networks

(Coscia, 2021) to define a new measure of affective polarization, the Affective Polarization

Coefficient. This measure calculates the correlation between the ideological difference and

hostility, given the correlation of the two variables in the vicinity of each edge. The influence of

neighboring relations decays exponentially over the network; i.e, with each step that is further

away from a node pair, the values of other node pairs have exponentially less influence. The

experiments below show how this measure can be interpreted and a formal definition is provided

in the Companion Paper Section 8.
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4.4 Affective Polarization Measure: Experiments

I test whether the Affective Polarization Coefficient captures both dimensions of affective polar-

ization. Moreover, I compare it to the Pearson Correlation Coefficient as one of the established,

yet not network-based, measures of affective polarization. Lastly, I investigate the only other

network-based affective polarization measure that is reported in the literature: Tyagi et al. (2021)

suggest an approach that relies on the Earth Mover’s Distance (EMD), a metric to calculate the

distance between two distributions, to quantify affective polarization. Their approach relies on

the idea that the individuals in the network can be categorized into two groups; in the case of

Tyagi et al. (2021) these groups consist of climate change believers and disbelievers. Affective

polarization is then calculated for each of the two groups separately as the difference between

in-group versus out-group hostility. In the experiments presented below, I split the nodes into a

liberal (blue) and conservative (red) group to calculate the EMD measure.

Interplay between ideological difference and hostility. In this experiment, I test how the

three measures account for the relation between ideological difference and hostility. I generate a

network with three communities; a small community of liberal nodes (blue), a small community

of conservative nodes (red) and a large community of mixed, moderate nodes as shown in Figure

4.6. The network structure and the ideological leaning assigned to each node stays fixed for all

experiments (a)-(e). I only change the hostility value assigned to each edge between two nodes as

shown in the scatter plots.1

In Figure 4.6(a) and 4.6(b), the hostility decreases as the ideological difference increases. This

relation gets weaker from (a) to (b); and in (c) the two variables are entirely uncorrelated. In (d)

and (e), the hostility and ideological difference are aligned and I therefore expect the highest

affective polarization in these cases.

As expected, both the Pearson Correlation and the Affective Polarization Coefficient increase

over (a)-(e). Both measures can thus account for the interplay between ideological difference and

hostility. On the contrary, the Earth Mover’s Distance does not behave as expected. According to

1I rely on scatter plots to show how node pairs differ in their ideological leaning and hostility values since it is not
possible to meaningfully visualize this in the networks in the first row of Figure 4.6.
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Figure 4.6: The first row shows the network topology used in this experiment where the node color
reflects opinion (blue as liberals, and red as conservatives). The second row shows how
ideological difference and hostility are related across all node pairs in the experiment. The
rows below report the results for the measures compared here. Since the EMD measure
proposed by Tyagi et al. (2021) is calculated per group, I specify a value for the group of blue
nodes and red nodes separately. All values reported are averages over 100 iterations of the
experiment.

this measure, the example in (b) is less polarized than (a), and (e) is less polarized than (d) which

should not be the case based on the argumentation above.

Structural dimension. Next, I investigate how the measures capture the network topology.

I generate three different networks in which the number of nodes and edges as well as the

ideological difference and the hostility between the node pairs stays constant. It is thus only the

network topology that changes. In Figure 4.7(a), the nodes are randomly connected and there

is no community structure. In (b), there is a community of liberal nodes (blue) which is clearly

separated from the remaining network. In (c), there is both a liberal (blue) and a conservative

(red) community as well as a mixed community of moderate nodes. Since the networks evolve

from random (a) to modular (c), I expect the affective polarization to grow.

The Affective Polarization Coefficient increases from (a) to (c) as expected. The EMD values

are smallest for (a) and larger for the other two networks. Moreover, the EMD measure seems

to account for the fact that there is a clearly distinguishable community of blue nodes in (b) as
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Figure 4.7: The first row shows the network topology used in this experiment where the node color
reflects ideological leaning (blue for liberals and red as conservatives). The second row shows
how ideological difference and hostility are related across all node pairs in the experiment.
The rows below report the results for the measures compared here. The values reported are
averages over 100 iterations of the experiment.

the values for the blue group (0.12) are notably higher than the values for the red group (0.03).

Lastly, the Pearson correlation stays constant for all three network topologies since it cannot

account for any topological features. I conclude that among the three measures tested here, only

the Affective Polarization Coefficient can appropriately capture both theoretical dimensions of

affective polarization.

To summarize, in this section I have identified dimensions that are relevant to the quantification

of ideological and affective polarization. Moreover, I have outlined twomeasures, the Generalized

Euclidean Polarization Index and the Affective Polarization Coefficient, which suitably capture

the respective dimensions and thus quantify the two types of polarization in social networks

(RQ1). In the following section, I use these measures to analyze the development of ideological

and affective polarization in the debate about Covid-19 restrictions on Twitter (RQ2).
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5 Case Study: Twitter Covid-19 debate

5.1 Data Collection and Preprocessing

The data collection is based on TBCOV, a large longitudinal Covid-19 data set spanning tweets

from 218 countries and a time frame of 1 February 2020 – 31 March 2021 (Imran et al., 2022).

This data set has been used in several studies on Covid-19 before (Chen et al., 2021; Goetz et al.,

2022; Jia et al., 2021; Trad & Spiliopoulou, 2021; Zhunis et al., 2022),1 and it contains tweet

IDs and location information related to each tweet. Especially the geo-location information is

valuable since the Covid-19 restrictions were confined by national borders and the tweets in the

data set should therefore be clearly allocated to a country.

I limit the data collection to tweets that are located in the United States and published from

February 2020 to July 2020. Based on this subset of tweet IDs, I collect the full tweet object

including the content of the tweet, user information, and other meta data provided by the Twitter

Application Programming Interface (API) for each tweet ID specified. It is important to note

that the final Twitter data set used here differs from the original TBCOV data set: some users

might have deleted some of their tweets or removed their Twitter accounts entirely and this

data is therefore not available any longer. Moreover, since the Twitter API only returns publicly

available tweets, all messages from users who changed their account settings to private do not

appear in the data set.

Next, I identify all English-language tweets using a pre-trained language detection model. I

further filter the data set so that the remaining tweets contain at least one keyword related to

Covid-19 restrictions. The initial keywords in this list are manually curated and supplemented by

semantically similar words which I found by training a word2vec model (for a detailed account

of the preprocessing and filtering steps, see the Companion Paper Section 12). The final data set

obtained contains approximately 47 million tweets by 4.1 million users.

1Note that the studies cited here refer to GeoCov19 (Qazi et al., 2020), a previous (smaller) version of the TBCOV
data set curated by the same authors.
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5.2 Ideological User Leaning

To estimate the ideological leaning of the users in the data set, I analyze how often users retweeted

posts by political and media accounts. This approach is based on the idea that liberal users are

more likely to interact and share posts by liberal political and media accounts, while conservative

users prefer conservative sources (Barberá, 2015). The list of political and media accounts, which

I will refer to as baseline accounts, comprises the Twitter accounts of the US politicians in the

118th US Congress (2019-2021). It is important to note that I only consider accounts that were

still available at the time of collecting the data. Since the Twitter account of the former President

Donald Trump has been banned, all retweets of Trump’s posts are not available any longer. I

use the DW-NOMINATE scores (Lewis et al., 2022), an established political science approach to

estimating the ideological leaning of US Congress members based on their roll call votes (Poole

& Rosenthal, 1997), to assign each politician’s account an ideological leaning score between −1

(liberal) to +1 (conservative).

Moreover, the list of baseline accounts contains news outlets which I retrieved from mediabias-

factcheck.com. This website scores the leaning of news outlets and this data has been used for

similar purposes in previous studies (Cinelli et al., 2021). A detailed account of how the news

outlets were curated is available in the Companion Paper Section 12. The distribution of baseline

scores is shown below (Figure 5.1).
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Figure 5.1: Distribution of the ideological leaning of the baseline scores.

To estimate the leaning of the users in the data set, I count how often each user retweets posts

by the baseline accounts and I calculate the average of the scores associated with each baseline
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account. Moreover, I only consider users who have retweeted at least 5 posts by the baseline

accounts in order to ensure that the user scores reflect an actual preference for liberal or con-

servative accounts and are not just the product of retweeting viral posts. Figure 5.2 shows the

distribution of the users that are considered in the remaining analysis. These results are robust

regardless of whether the threshold is set at 2 or more retweets (see Companion Paper Section 13),

but it is important to note that this approach only allows me to classify approximately 104,000

users (2.54% of the entire user base in the sample).
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Figure 5.2: Distribution of the user scores for users who retweeted at least 5 different baseline accounts.

As the histogram shows, the distribution of ideological leanings is skewed in this sample as there

are considerably more liberals than conservatives. This finding is consistent with other analyses

on the ideological divide in the US-based pandemic debate on Twitter (Lazer et al., 2020), but

the results presented below should nevertheless be treated with caution and interpreted given

the fact that the distribution is skewed.

5.3 Hostility Classification

As outlined in the literature review, all prior studies investigating affective polarization on social

media have used sentiment as a measure of favorability or hostility. I diverge from this approach

since the sentiment of social media posts is heavily influenced by the topics that users discuss

which is particularly problematic in the Covid-19 debate. The sentiment of pandemic-related

posts is overall very negative because users discuss topics such as death, disease, isolation, and

mental health issues (this is e.g. shown in Imran et al., 2022). The negative sentiment is given by
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the somber topic of conversation, but it should not be interpreted as a sign of out-group hostility

or affective polarization.

Instead, I choose to use offensive language as an indicator for hostility in user interactions. For

this classification task, I use a RoBERTa-base model that was re-trained on approximately 58

million tweets and fine-tuned for the detection of offensive language by Barbieri et al. (2020).

The details of the classification approach are outlined in the Companion Paper Section 14. Figure

5.3 shows the distribution of offensive language tweets from February 2020 to July 2020. In

the first few weeks in February, the fraction of offensive tweets is very small and it increases to

approximately 15% in the following weeks.
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Figure 5.3: Fraction of offensive tweets from February 2020 to July 2020.

5.4 Networks

To observe the development of ideological and affective polarization over time, I split the data set

into subsets. Each subset spans a week fromMonday to Sunday in order to avoid any weekday or

weekend effects. From these subsets, I extract all replies and mentions between users for which

there are ideological leaning scores and I build undirected networks based on that. Since there

can be more than one reply or mention between two users, I calculate the average offensiveness

of all their interactions and use those as edge attributes. As outlined in the Companion Paper

Section 14, the results are robust to the way that the offensiveness scores of multiple edges

between one node pair are summarized. I discard the directionality of the edges because the

measures used here quantify the ideological and affective polarization as aggregates over the
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entire network. In other words, I am interested in how frequently and how hostile liberal and

conservative users interact at large, but in this macro-level view it does not make a difference

whether it is a liberal user addressing a conservative user or vice versa. Once I have created the

network for each time frame, I extract the largest connected component because the ideological

polarization metric requires a connected graph.

5.5 Results: Ideological and Affective Polarization on

Twitter

The results are summarized in Figure 5.4 below which shows the development of ideological and

affective polarization in the Covid-19 debate on Twitter over the course of half a year. Below

some exemplary visualizations of the network structures encountered in the Twitter sample, the

second row visualizes how the Generalized Euclidean Polarization Index evolves over time. As

argued above, this ideological polarizationmeasure (y-axis) shows the extent to which liberals and

conservatives reply to and mention each other. If there are many interactions between users of

opposing leanings and users are thus exposed to a range of views, the score is low (the minimum

is 0). If, however, there are only few interactions between disagreeing users and they mainly

interact with like-minded others in homogeneous communities, the ideological polarization

measure is high (the maximum is an arbitrary positive value).

As expected, the ideological polarization is low throughout February 2020 since the Covid-19

regulations were not a widely discussed topic yet. The ideological polarization increases from

late February to mid-April 2020. At this time, all states reported widespread cases of Covid-19

and the US became the country with the highest number of Covid-19-related deaths in the world

(Centers for Disease Control and Prevention, 2022). This peak in ideological polarization also

coincides with a change in policy regarding face masks. In April 2020, the Centers for Disease

Control and Prevention started recommending the use of face masks as a preventive measure

although officials had discouraged wearing face masks until that point (Centers for Disease

Control and Prevention, 2022). To investigate whether this topic is mirrored in the Twitter

discussion, I analyse how often the users referred to the Covid-19 restriction keywords that
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I used to filter the data set (see Companion Paper Section 12 for a list of all keywords). This

analysis shows that the most frequently occurring terms in weeks 15–17 are mask and test and I

conclude that the Twitter users in the sample indeed discussed the face mask policy in spring

2020. After the first peak in April 2020, the ideological polarization score decreases slightly, and

then increases again to a high level in July 2020.
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Figure 5.4: Ideological and affective polarization in the debate about Covid-19 restrictions on Twitter.
The first row shows four examples of network topologies; node color reflects ideological
leaning (blue for liberals, red for conservatives). The networks are visualized using a force-
directed layout algorithm. The line plot in the second row summarizes the Generalized
Euclidean Polarization Index and the third row shows the Affective Polarization Coefficient.

The third row in Figure 5.4 shows the development of the Affective Polarization Coefficient in

the Twitter sample. To recap, this score captures the relation between ideological differences and

the use of offensive language towards other users. If there is no relation, i.e., users speak similarly

(un)offensive to others regardless of whether they share the same ideological leaning or not, then
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the score is 0. If there is a perfect relation, that is like-minded users only use unoffensive language

and disagreeing users only use offensive language to address each other, then the score is 1.

According to the measure proposed in this paper, there is no affective polarization in week

6. This is to be expected since the share of offensive tweets was smaller than 5% in this week

and all users therefore communicated with each other using unoffensive language regardless

of whom they talked to. This changes in early March 2020 when the Affective Polarization

Coefficient increases to approximately 0.3. The score remains at this level until June 2020 when

it starts increasing considerably more. According to this measurement, affective polarization

was very high throughout June and especially July 2020 as the highest score of approximately 0.8

is reported in the last week in July. The keyword analysis shows that, apart from the terms test

and mask, the keyword school is among the three most frequently used words in the sample at

this point in time. This coincides with an intense public debate about whether or not to reopen

schools after the summer break (Grossmann et al., 2021), and the results presented here might be

an indicator that Twitter users engaged in a heated debate online too.

Lastly, it is important to note that the fluctuations in the ideological and affective polarization

scores are not merely the result of differences in the size of the networks. As I show in the

Companion Paper Section 8, both measures do not take the number of nodes in the network

into account and they are thus size-independent.

6 Discussion
In this paper, I set out to quantify ideological and affective polarization in a social network and

apply those measures to a case study of the Covid-19 debate on Twitter. The contribution of this

project lies in the theoretical, methodological and analytical work presented here. To begin, I

derive a theoretical conceptualization and distinction of ideological and affective polarization

from the literature. These insights are then used to select and discuss a network-based measure

to quantify ideological polarization. Furthermore, I propose a new network-based affective

polarization measure that addresses some shortcomings of other methods currently in use.
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I conclude that the Generalized Euclidean Polarization Index and the Affective Polarization

Coefficient are suitable measures to quantify ideological and affective polarization in social

networks (RQ1).

Nevertheless, the measures presented here are subject to several limitations that could be ad-

dressed in future studies. First, both measures rely on one-dimensional ideological scaling. When

applied to other countries than the United States, a different ideological scale that, for example,

accounts for a multi-party system would be needed. Second, the affective dimension quantified

here solely focuses on hostility. There are other types of social ties such as trust, respect or

support which could be explored instead.

While the synthetic experiments show that the Affective Polarization Index captures all relevant

dimensions in a controlled setting, further verification of the measure and how it behaves when

applied to real-world social media data is still needed. This question could be tackled by analyzing

social media samples collected during election versus non-election times. Since elections are

moments of intense partisan conflict, these events are likely to be accompanied by increased

levels of affective polarization (Hansen & Kosiara-Pedersen, 2017; Hernández et al., 2021).

A second contribution of this study concerns the social media data analyzed as I collect and

examine a large-scale data set on Twitter interactions surrounding the Covid-19 debate in the

United States. The analysis leverages state-of-the-art computational methods, in particular

natural language processing using transfer learning and algorithms for network analysis, to

generate insights about the ideological and affective polarization during the Covid-19 pandemic

(RQ2). I find that the levels of both ideological and affective polarization were low in early

February and then increased during the subsequent weeks. The affective polarization measure

shows moderately high scores throughout spring 2020 and then increases starkly in June and

throughout July; a development that coincided with a heated debate about school reopenings in

the United States. For ideological polarization, I observe a peak in mid-April, a time when the

policy regarding the use of face masks changed. There are further interesting questions that the

present study does not answer; for instance, the review of literature on political polarization

could not conclusively clarify how ideological and affective polarization are related. The data

22



used here is not suited to approach this question, but future studies should shed light on the

relation between the two types of polarization on social media.

Lastly, there are limitations associated with the data analysis. Especially the skewed distribution

of user leanings calls into question whether the sample collected here is a valid snapshot of the

Covid-19 debate on Twitter. The strong liberal leaning of the sample is most likely due to the

keyword list which was used as part of the TBCOV data set, based on which I collected the

sample. This list comprises keywords such as Covid-19 or coronavirus which are terms used by

people who acknowledge that the pandemic is a real and serious public health emergency. It

follows that tweets by users who ridicule or reject this idea are not included in the data set. This

issue could be addressed in future work by including more keywords and hashtags that are used

by pandemic-skeptic individuals.

Moreover, due to the different preprocessing and filtering steps, only a small fraction of users and

tweets are considered in the final analysis of ideological and affective polarization. This problem

is common to many studies of polarization on social media, and further insight is needed on how

representative the results are for the social media user base at large. While it is important to not

overinterpret platform-related and sample-specific results, the findings nevertheless complement

previous studies well and they represent a first, exploratory approach to ideological and affective

polarization in the pandemic debate on Twitter.
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Part II

COMPANION PAPER

The companion paper outlines additional technical details and analyses which are referred to

in the main article. I first describe how the Generalized Euclidean Polarization Index and the

Affective Polarization Coefficient are formally defined and I show that the measures are scale

invariant. Next, I provide formal definitions of the other alternative polarization measures and

I describe how the synthetic network data in the experiments is generated. The subsequent

sections detail the Twitter data collection and preprocessing steps, and I present robustness

checks of the analysis presented in the main article. Summary statistics of the Twitter networks

used in the analysis conclude the companion paper.

8 Network Polarization Measures

8.1 Generalized Euclidean Polarization Index

The Generalized Euclidean Polarization Index, which I will refer to as δG,o, requires two inputs

(Hohmann et al., 2022): First, a network G = (V, E) with the set of nodes defined as V and the
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set of edges E. The network needs to be connected and it cannot contain any edges connecting a

node with itself (self-loops). Second, the measure requires the ideological leaning of each user as

a numeric value between [−1, 1]. In the case study above, −1 indicates extremely liberal Twitter

users, 0 indicates moderates, and +1 indicates extremely conservative users. The leanings are

represented in a vector o which is split into two vectors of length |V |: on the one hand, there is

o+ which contains all positive opinions and zero otherwise and on the other hand, there is o−

which contains the absolute value of all negative opinions and zero otherwise.

Given these two inputs, the Generalized Euclidean Polarization Index δG,o quantifies the ideo-

logical polarization of a social network by returning a numeric value. This value is in between

0 (no polarization) and an arbitrary positive number (the higher this number, the higher the

polarization in the network). The measure is defined as (Hohmann et al., 2022):

δG,o =
√

(o+ − o−)T L†(o+ − o−)

where o+ is the positive opinion vector and o− is the negative opinion vector (as outlined above),

and L† is the pseudoinverse of the Laplacian matrix of G. The Laplacian matrix captures the

structure of the graph as a matrix representation. It is formally defined as L = D − A where A

is the adjacency matrix of G (a matrix showing which nodes are connected by an edge) and D

is the degree matrix of G (a matrix capturing the number of edges of each node). This results

in an n × n matrix which contains each node’s degree on the diagonal, −1 if two nodes i

and j are connected, and 0 otherwise. The Generalized Euclidean Polarization index uses the

Moore-Penrose pseudoinverse L† of this Laplacian matrix.

8.2 Affective Polarization Coefficient

The Affective Polarization Coefficient is based on the recently introduced network correlation

which requires three inputs (Coscia, 2021): a network G = (V, E) and two vectors x and y. The
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measure uses those inputs to calculate a correlation between the vectors x and y while taking

the structure of the network into account.

The network correlation can only calculate correlations for node attributeswhich poses a problem

since the ideological difference and hostility between two nodes are modelled as edge attributes

in the networks I analyze here. To solve this problem, I use the line graph representation which

turns all edges and their attributes into nodes and associated node attributes. The line graph is

an established network science method to, for instance, find communities among edges rather

than nodes (Deng et al., 2015; Evans & Lambiotte, 2009). Each edge in G is represented as a node

in the line graph G′ and each node that is common to two edges in G is represented by an edge

in G′ (see Figure 8.1).
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Figure 8.1: Example of a network G and its line graph G’.

The Affective Polarization Coefficient takes the line graphG′, a vector x specifying the ideological

difference between each pair of users, and a vector y recording the hostility between user

pairs. From this line graph, I retrieve a weight matrix W that contains the exponentiated

shortest path distances for each node pair in G′. Moreover, I calculate the means x̄ and ȳ

of the respective vectors and then determine their centred versions; i.e., x̂ = (x − x̄) and

ŷ = (y − ȳ). Next, I calculate the (network) standard deviation as σx,W =
√∑

W × (x̂ ⊗ x̂)

and σy,W =
√∑

W × (ŷ ⊗ ŷ).

The measure is defined as:

ρx,y,G′ =
∑

W × (x̂ ⊗ ŷ)
σx,W σy,W

where x̂ and ŷ are the centred vectors, W is the weight matrix, × is an element-wise product

operation, and ⊗ is the outer product operation.
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8.3 Scale Invariance

I argue that the ideological and affective polarization measures are scale invariant. In other

words, they report the same value for two networks with the same topology even if the number

of nodes in the two networks are different. To verify this property, I generate a network with

two separated cliques, a blue one and a red one, which are connected by a few edges (see Figure

8.2). The ideological leaning values are randomly drawn from a uniform distribution. The edges

between the cliques are always 5% of the edges within each of the cliques. I then grow the network

by adding nodes and edges within the cliques, and adjusting the number of edges between the

cliques. I generate hostility values that are highly aligned with the ideological difference between

two nodes. For all edges within the blue and red clique, the hostility values are low, while I assign

a high hostility value to each (newly added) edge between the cliques.
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Figure 8.2: Scale invariance experiment. Exemplary network visualizations (first row), Generalized
Euclidean Polarization Index (second row), and Affective Polarization Coefficient (third row
row) for topologically similar networks of different sizes.

Figure 8.2 shows that as the network grows, the scores approach a limit. This is to be expected

since the Generalized Euclidean Polarization Index is a relative measure of the distance between

node attributes and the Affective Polarization Coefficient is derived from the scale invariant
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Pearson correlation. I conclude that the measures are indeed scale invariant for networks with

similar topologies but different sizes. This is an important property since I can rule out the

possibility that the results of the Twitter data analysis are due to the number of nodes in the

networks.

8.4 Relation Between the Polarization Measures

Since I apply both measures to the same Twitter networks, it is important to investigate whether

variations in one measure determine variations in the other measure by construction. I argue

that the two measures are unrelated to each other even when they are calculated on the same

network with the same node leanings.
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Figure 8.3: Relation between the Affective Polarization Coefficient and the Generalized Euclidean
Polarization Index. The first row shows the network topology where the node color reflects
opinion (blue as liberals, red as conservatives). The scatter plots in the second row show
how ideological difference and hostility are related across all node pairs. The rows below
report results of 100 iterations of the experiment.

To verify this claim, I repeat the experiments in the Section 4.4 in the main article. As Figure 8.3

shows, the network structure is the same from (a)-(e) but the correlation between the ideological

difference and the hostility changes. As expected, the Generalized Euclidean Polarization Index

and the Affective Polarization Coefficient are entirely unrelated. While the former one is the same

for all networks due to the fixed topology, the latter one changes according to the correlation

reported in the scatter plots. This confirms that the values reported by one measure are not

determined by the other measure.
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9 Alternative Polarization Measures

9.1 Assortativity Coefficient

The Assortativity Coefficient measures whether node pairs share similar values with respect to

a given attribute (Newman, 2003). As a measure of ideological polarization, the Assortativity

Coefficient captures if nodes are surrounded by other like-minded nodes (Mønsted & Lehmann,

2022).

For each node in a node pair, the values of the given attribute are recorded as x (for the first

node) and y (for the second node). I summarize these value pairs (x, y) in a matrix e that captures

the fraction of edges connecting the values x and y in the network in each entry exy . To put it

differently, the matrix shows how often the different combinations of the values x and y appear

in the network relative to the total number of edges in the network. Furthermore, I calculate the

row sums, i.e., the fraction of edges starting from a node with value x, as ax (
∑
y

exy = ax) and

the column sums, i.e., the fraction of edges arriving in a node with value y, as by (
∑
x

exy = by).

The Assortativity Coefficient is then defined as the Pearson correlation betweenx and y (Newman,

2003):

ρG,o =

∑
x,y

xy(exy − axby)

σaσb

where σa and σb are the standard deviations of ax and by . The measure can return values between

−1 (perfectly disassortative network) to +1 (perfectly assortative network).
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9.2 Random Walk Controversy

The RandomWalk Controversy measure quantifies how easily the boundary between two com-

munities in a network can be crossed. When applied to ideological polarization, this measure

can show how closely connected two communities in the network are.

The measure partitions the graph into two communities using a community discovery algorithm.

In the experiments presented in the main article, I use the Kernighan-Lin algorithm (Kernighan

& Lin, 1970). Once the two communities C1 and C2 are identified, the measure simulates several

thousand random walks1 for which half of the walkers start in community C1 and the other

half start in C2. From each community, 10% of nodes are randomly drawn and saved in two

community-specific subsets. Each walk ends as soon as the walker reaches a node in either of

those subsets.2 The results of the random walks are summarized in four probabilities pC1,C2 ,

pC2,C1 , pC1,C1 , and pC2,C2 that capture in which community the randomwalker started and ended.

For instance, pC1,C2 is the probability of the walker starting in C1 and ending in C2. The Random

Walk Controversy measure is then calculated as (Garimella et al., 2018):

RWCG = pC1,C1pC2,C2 − pC1,C2pC2,C1

This measure ranges from−1 (all randomwalkers end in the other community) to+1 (all random

walkers end within their own community).

9.3 Pearson Correlation Coefficient

The Pearson Correlation Coefficient captures the linear relationship between two variables x

and y. In the case of affective polarization, the correlation between ideological difference and

1In particular, the measure randomly chooses 10% of the nodes in the network, simulates random walks for all of
the nodes within the subset, and repeats this process 1,000 times.

2Note that in the paper itself, Garimella et al. (2018) argue that their measure stops as soon as the random walker
reaches a node with high degree in either community. Since the code implementation made available by the
authors works slightly differently, I describe what the code does here.
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hostility is indicative of the in-group versus out-group hostility. To calculate the measure, the

mean value x̄ and ȳ of the two variables is obtained. The sample Pearson correlation coefficient

is then defined as (Hogg et al., 2019):

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

σxσy

where xi and yi are sample points of the variables, x̄ and ȳ are the sample means, and σx as well

as σy are the standard deviations of x and y.

9.4 Earth Mover’s Distance

I also compare my measure to the affective polarization measure proposed by Tyagi et al. (2021)

which is based on the EarthMover’s Distance, ameasure of the distance between two distributions,

as well as a network measure named Krackhardt’s E/I index. The premise of this measure is that

the nodes in the network can be divided into two stance groups k and k′; e.g., climate change

believers and disbelievers in the case of Tyagi et al. (2021). In the experiments presented in the

main article, I use 0 as a threshold to split the nodes into a liberal (< 0) and a conservative group

(> 0). Next, the weight of each edge wij is determined by the hostility of the user interaction. In

particular, w+
ij denotes all non-hostile edge weights, and w−

ij denotes all hostile edge weights.3

The measure consists of two components that are determined separately, the valence (sign) of

the affective polarization score and its magnitude. Moreover, it is important to note that the

measure is calculated for each stance group k separately.

3Tyagi et al. (2021) rely on a sentiment analysis to estimate sentiment values between ±1 as an indicator for
hostility. In their measure, they therefore consider positive (> 0) and negative (< 0) interactions. Since the
hostility values I generate in the experiments are between [0, 1], I change the measure to non-hostile (< 0.5)
and hostile interactions (> 0.5).
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Affective polarization valence. To retrieve the sign of the score, the E/I index for the subgraph

containing all non-hostile interactions G+ is calculated as follows:

P +
k = E+

k − I+
k

E+
k + I+

k

where E+
k is the sum of all non-hostile out-group edges and I+

k is the sum of all non-hostile in-

group edges. Similarly, the E/I index for the subgraph of all hostile interactions G− is calculated

as:

P −
k = E−

k − I−
k

E−
k + I−

k

where E−
k is the sum of all hostile out-group edges and I−

k is the sum of all hostile in-group edges.

Finally, the sign of the affective polarization score is determined by:

Pk = P −
k − P +

k

2

If Pk results in a positive value, then the out-group interactions are disproportionally hostile

and affective polarization is therefore high, while values close to 0 indicate low levels of affective

polarization. Lastly, negative values of Pk indicate that the in-group interactions are especially

hostile.

Affective polarization magnitude. To determine the extent to which a network is affectively

polarized, the measure considers the distribution of out-group hostility uk and the distribution of

in-group hostility vk. Next, it calculates the Earth Mover’s Distance to determine the difference

between these two distributions. Finally, Tyagi et al. (2021) define their measure lk as:

lk =

−
∫ +∞

−∞ |Uk − Vk| : Pk < 0∫ +∞
−∞ |Uk − Vk| : Pk ≥ 0

where Uk and Vk are the cumulative distribution functions of uk and vk respectively. Intuitively,

the Earth Mover’s Distance captures how different the in-group hostility values are compared to

the out-group hostility values. Moreover, Pk determines the sign of the final measure: if Pk ≥ 0
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then themeasure has a positive signwhich indicates that affective polarization is high. Conversely,

if Pk < 0, the measure has a negative sign which indicates that there is more in-group than

out-group hostility.

A few remarks about this measure should be noted. First, as I show in the main article, it does not

appropriately account for one of the dimensions of affective polarization, namely the interplay

between ideological differences and hostility. Second, the measure assumes that two groups of

individuals can always be clearly distinguished in the network which proves difficult for cases

in which ideological leaning is modelled as a continuous variable, for instance between ±1. I

solved this problem in the experiments by enforcing a split at 0. As a consequence, the measure

is more coarse since it treats nodes with an ideological leaning smaller (larger) than but close to

0 the same as nodes with extreme leanings close to −1 (+1). It follows that a measure that takes

continuous values into account, such as the Affective Polarization Coefficient proposed here, is

preferred.

10 Synthetic Data Generation
I generate synthetic network data for the experiments comparing the different polarization

measures. Each network G is generated using a stochastic block model for which I specify the

number of nodes per community, and a block probability matrix which defines the connection

probabilities of these communities. In this matrix, the edge probability for nodes to connect to

other nodes within their community (pin) is shown on the diagonal; and all other matrix entries

show the probability of edges between the communities (pout). All networks in the experiments

presented in section 3 have n=100 nodes. I use a force-directed layout algorithm to visualize all

networks presented in the main article.

Ideological Polarization Experiments. I create a stochastic block model with four communi-

ties (I - IV) of 25 nodes each and edge probability matrices as specified in the Table 10.1. The

ideological leaning values for the nodes in these networks are randomly drawn from a normal
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distribution in Figure 4.3(a) in the main article, and bimodal distributions in Figures 4.3(b) and

4.3(c).

I II III IV

I 0.136 0.136 0.136 0.136
II 0.136 0.136 0.136 0.136
III 0.136 0.136 0.136 0.136
IV 0.136 0.136 0.136 0.136

I II III IV

I 0.256 0.0024 0.0024 0.0024
II 0.0024 0.256 0.0024 0.0024
III 0.0024 0.0024 0.256 0.0024
IV 0.0024 0.0024 0.0024 0.256

I II III IV

I 0.269788 0.001208 0.0 0.0
II 0.001208 0.269788 0.001208 0.0
III 0.0 0.001208 0.269788 0.001208
IV 0.0 0.0 0.001208 0.269788

Table 10.1: Block probability matrices for the networks used for the experiments on the ideological
polarization measures. Left: random network where pin = pout in Figure 4.3 and 4.4(a) in
the main article. Middle: network with four communities which are all connected to each
other in Figure 4.4(b). Right: network with four consecutively connected communities in
Figure 4.4(c).

Affective Polarization Experiments. For the experiments on the affective polarization mea-

sures, I generate stochastic block models with four communities (I - IV) of 25 nodes each. To

assign ideological leanings to the nodes, I draw random values from a uniform distribution

which results in a dark blue, light blue, light red, and dark red community. Due to how I choose

to connect the nodes (see Table 10.2), it is not possible to visually distinguish between all four

communities in Figure 4.7 in the main article as the light blue and light red community are tightly

connected in Figure 4.7(a)-(c).

I II III IV

I 0.0625 0.1250 0.0000 0.0000
II 0.1250 0.0625 0.5000 0.0000
III 0.0000 0.5000 0.0625 0.1250
IV 0.0000 0.0000 0.1250 0.0625

I II III IV

I 0.2375 0.0125 0.0000 0.0000
II 0.0125 0.0000 0.5500 0.0000
III 0.0000 0.5500 0.0625 0.1250
IV 0.0000 0.0000 0.1250 0.0625

I II III IV

I 0.2375 0.0125 0.0 0.0
II 0.0125 0.0 0.62 0.0
III 0.0 0.62 0.0 0.0125
IV 0.0 0.0 0.0125 0.2375

Table 10.2: Block probability matrices for the networks used for the experiments on the affective
polarization measures. Left: network without a clear community structure (Figure 4.7(a) in
the main article). Middle: network with a dark blue and a mixed community (Figure 4.7(b)).
Right: network a dark blue, dark red, and a mixed community (Figure 4.7(c)).

Next, I calculate the ideological difference for each node pair in the network which can take

values in between 0 (no difference) and 2 (maximum difference). For each ideological difference

value, I determine an interval from which the hostility value is randomly drawn. Then, the

resulting hostility values are adjusted to be in a range between 0 (no hostility) to 1 (maximum

hostility).
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11 Data Collection
After having discussed the generation of the synthetic experiment data, I now turn to the Twitter

data collection process. The first part of the chapter discusses legal considerations that play a

role when processing social media data and the second part then describes the data collection

and available geo-tags in the data set.

11.1 Legal Considerations

I start by briefly outlining how I assured that the data collection and processing is in line with

the legal guidelines set out by the General Data Protection Regulation (GDPR).1 While some

of the tweets in the data set were authored by organizations such as companies or news media

outlets, the majority of the tweets were posted by private Twitter users. Within the European

legal framework, these users are referred to as natural persons. Since the data set contains

personally identifiable data such as user names relating to natural persons (GDPR article 1) and

the processing of this data takes place within the European Union (GDPR article 3(1)), the data

collection and processing activities are subject to the GDPR.

To begin, a legal basis for collecting the data needs to be defined. As outlined in article 6 and

article 9 of the GDPR, “scientific research purposes in the public interest" constitute a valid legal

basis for collecting personal data (GDPR article 4) as well as sensitive personal data (GDPR article

9). I use scientific research purposes as the legal basis and, in accordance with the data protection

guidelines for master theses by the University of Copenhagen, I obtained the confirmation that

this project indeed qualifies as a research project from the thesis supervisors prior to collecting

the data.

1The reference to the legal text can be found under The European Parliament and the Council of European Union
(2016). I will refer to this source simply as ‘GDPR’ in order to improve readability.
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Furthermore, theGDPRoutlines that special precautions need to be takenwhen storing personally

identifiable data (GDPR article 5(1)(f)). The raw data, i.e., the tweet objects which I collect from

the Twitter API, are stored on a password protected external hard drive to prevent unauthorized

access by third parties. Further restrictions apply to all files that specify the ideological leaning

of the users in the data set since they contain information about the political opinions held by

the users and thus qualify as sensitive personal data (GDPR article 9). Consequently, any files

containing ideological scores which were inferred from the data are stored on the University of

Copenhagen’s secure drive to ensure additional data protection.

Lastly, I only analyze the tweets at an aggregate level. I do not infer or describe any information

that relates to individually identifiable natural persons in the data set and I do not publish the

tweet information or make it otherwise available as part of the thesis.

11.2 Tweet Locations

As argued in the main article, I use the tweet IDs available as part of the TBCOV data set to

collect the full tweet object including meta-data (Imran et al., 2022). The authors of the TBCOV

data set used a list of manually curated Covid-19 keywords and hashtags to collect tweets. They

then inferred geo-locations from the tweet or the meta-data available for each tweet. There are

five different types of location tags available in the TBCOV data set:

Geo-coordinates. For a small fraction of tweets, the GPS location from which the tweet was

sent is specified. This information is only available for users who actively enable GPS tracking in

their privacy setting. Among the different location tags, the GPS coordinates are the most reliable

since they point towards the exact location of the user. When available, I use the geo-coordinates

to determine if a tweet belongs to a US-based user. If this information is not available, one of the

other tags below is used instead.

Place bounding box. When users tweet, they can choose to use a GPS location in their tweet.

These place bounding boxes point towards a larger area that the user selected as their current

location (Figure 11.1 shows an example). They are different from the geo-coordinates mentioned
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above, since the user can actively choose the area of the place bounding box themselves. Those

areas always refer to real-world places, but a user could choose any place around the world

regardless of whether they are currently there or not.

Place bounding box

Figure 11.1: Example of a place bounding box used to tag a tweet.

Profile description. Moreover, Imran et al. (2022) rely on the user profile descriptions to infer

the geo-location of a user (see Figure 11.2). Since this description is in a free-text field, users

are free to refer to any (or no) place here regardless of whether it exists or not and inferring the

location is therefore less reliable in these cases.

User location. Public profiles on Twitter can opt to specify a place at which the account is

usually located (see Figure 11.2). This user location is a free text field and users can therefore put

any kind of information there, including fictional places. Similar to the profile description, this

information is less accurate than the GPS coordinates.

Copenhagen Center for Social Data Science
CPH_SODAS

Copenhagen Center for Social Data Science (SODAS) is an interdisciplinary research
center at the Faculty of Social Sciences at the University of Copenhagen.

CSS, Copenhagen sodas.ku.dk Joined April 2019

90 Following 1,756 Followers

User location

User profile

Figure 11.2: Example of a profile description and a user location in a Twitter profile.

Finally, Imran et al. (2022) use the text of a tweet since some tweets mention a place or region.

However, I do not use the tags inferred from the text of a tweet since they might not reflect the

actual location of a user. For instance, a user located in Denmark might tweet about the US

Covid-19 restrictions and the geo-tag inferred from the tweet text might thus be ‘US’ although

the user is actually located in Europe.
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As argued above, the different approaches vary in how reliably they can detect the actual location

of a Twitter user. The authors of the TBCOV data set therefore assess the quality of the geo-

tagging results (see Table 11.1). First, they compare the place bounding box information with

the actual geo-coordinates for the profiles where GPS coordinates were available. Second, they

manually annotate tweets to check the user location and the user profile. Based on the manually

annotated data, several performance metrics are calculated. Precision shows how many of the

inferred locations are relevant, while recall indicates how many of the relevant locations were

inferred. Moreover, the F1-score determines the balance between precision and recall. As the

table shows, the geo-tagging approaches performed well overall and there are no major issues

reported.

Precision Recall F1-score

Place Bounding Box 0.988 NA NA
User Location 0.866 1.0 0.929
User Profile 0.888 0.732 0.803

Table 11.1: Performance of the geo-tagging approach deployed by Imran et al. (2022) on the TBCOV
data set.

12 Data Preprocessing
Apart from determining the subset of US-based tweets, I apply further preprocessing steps which

are described in the following sections.

12.1 English Language Detection

The first preprocessing step consists of detecting English-language tweets. This is necessary

because I use a deep learning model to classify offensive tweets in the subsequent analysis.

Since this offensiveness detection model has been pre-trained on English language tweets, it is

important to ensure that the tweets in my data set are English-speaking to avoidmisclassifications

due to different tweet languages.
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To detect English-language tweets, I use a pre-trained version of the fastText language model

(Joulin et al., 2016; Joulin et al., 2017). FastText builds on the idea that the morphological

structure of each word matters. In practice, this means that each word is split into smaller parts,

the character n-grams of a word. For instance, the n-gram of the word ‘pandemic’ with n = 3

are <pan, and, nde, dem, emi, mic>. The model then uses a hashing function to assign a numeric

vector to each n-gram. The word vector for the entire word, e.g. ‘pandemic’, is calculated as the

sum of all the n-gram vectors. To put it differently, the vector representation of each word is a

summary of all the sub-word parts and thus accounts for the morphology of each word.

Document 
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Transformed 
document vector

… ………
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word 
vector 1

class A class Y class Zclass B
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Figure 12.1: FastText architecture. The figure is recreated from Zhou et al. (2020, p. 3).

Next, the average of all the word vectors in a document is calculated (see Figure 12.1). The

resulting document vector passes through a linear hidden layer and a softmax function is finally

applied to calculate the class probabilities. In the case of a language detection task, the classes

correspond to the different languages which can be detected and the class probabilities specify

how (un)certain the classification is.

Figure 12.2 shows the distribution of these probability scores for the detection of English-

language tweets in the Twitter sample. I choose a relatively high threshold of 0.8 above which I
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consider tweets to be English-speaking in order ensure that the further analysis, in particular the

offensiveness classification, is not distorted by non-English tweets.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of predicted language

0.5

1.0

1.5

2.0

2.5

# 
Tw

ee
ts

1e7

Figure 12.2: Distribution of the language detection probabilities.

12.2 Keyword List: Covid-19 Restrictions

The second preprocessing step involves filtering the data set to only contain tweets whichmention

the Covid-19 restrictions. The keywords that Imran et al. (2022) used to obtain the TBCOV data

set contain broad Covid-19-related terms such as coronavirus, lockdown or disaster and I further

restrict this data set to ensure that the results measure polarization within a topically bounded

Twitter public that discusses restrictions as a sub-topic of the broader Covid-19 discourse.

Since defining a suitable list of keywords is a challenging task, I train a word2vec model on the

tweet corpus which allows me to explore the corpus and the Twitter-specific terms that the

users mention in their tweets (Mikolov, Sutskever, et al., 2013; Mikolov, Chen, et al., 2013). The

conceptual premise of a word2vec model is that one can infer the similarities between words

from the context they appear in. Each word in the corpus is represented as a numerical vector of

size n that captures different features. The semantic meaning of words can be described in terms

of how these features differ since word synonyms are represented by similar vectors. In practice,

cosine similarity is used to calculate the similarity between vectors.

Whereas the fastText vectors are based on the sub-word structure of each word, word2vec

learns vector embeddings for each word regardless of its morphological structure. To define
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the word2vec vector representations, a neural network is trained. The labelled training data

that the model requires is retrieved by defining a word window that moves over the text of each

tweet. I use the Continuous Bag of Words (CBOW) technique here in which the model takes

the context of each word as the input and then predicts the word corresponding to the context

w(t) (see Figure 12.3). A neural network with one hidden layer of size n is then trained on all

labelled examples and once the training is finished, the weights of the hidden layer are used as

the numerical vectors.

Copenhagen is the capital of Denmark.

is

the

the ofDenmark

capital

Continuous Bag of Words (CBOW)

Sentence

Input

Projection

w(t-2) w(t-1) w(t+1) w(t+2)

of

Output

w(t)

Figure 12.3: CBOWword2vec architecture. The visualization is recreated fromMikolov, Chen, et al.
(2013).

As a last step, I manually collect a list of keywords on Covid-19 restrictions and use the trained

word2vec model to find synonyms and further relevant terms to add to the keyword list. In this

list, I combine keywords and Twitter-specific hashtags. To include Covid-19-skeptical attitudes in

the data set, I also use the word2vec model to define a list of keywords used by pandemic-skeptical

individuals. Since these users do not seem to use terms that specifically discuss the restrictions,

but rather reject the idea of a pandemic in general, the Covid-19-skeptical keywords are broader.

The final list of stemmed keywords and hashtags is shown below. The list contained three emojis

that were frequently used by users discussing Covid-19 restrictions and those were therefore

included in the keyword matching (see Figure 12.4).

Keywords on Covid-19 restrictions. #alonetogether, #asktheexperts, #avoidcrowds, #covery-

ourcough, #coveryourface, #dontbeacovidiot, #fightcovid, #flattenthecurve, #keepingyousafe,

#quaranteam, #quaratinelife, #shelterinplace, #sixfeetapart, #stayingsafe, #staysafeeveryone,

#staysafestayhealthy, #stoppingthespread, #stopthespreadofcovid, #togetherapart, abid, adher,

47



antigen, ban, clorox, clos, complianc, contact, curb, curfew, decontamin, deterg, disinfect, dis-

pens, distanc, guidanc, guidelin, home, hygein, hygien, isol, lockdown, lysol, mask, measur,

minim, mitig, pcr, plexiglass, precaut, prevent, procedur, protect, protocol, quarantin, quarentin,

recommend, requir, respons, restrict, result, sanat, sanit, school, sheild, shield, test, touchless,

touchpoint, trace, wash, wear

ruler soapI face mask

Figure 12.4: Emojis used to match tweets discussing Covid-19 restrictions.

Covid-19-skeptical keywords. #americawakeup, #covidlies, #covidscamdemic, #falseflag,

#fauxnews, #medialies, #mediascum, #msmistheenemyofthepeople, #nonewnormal, #openameri-

canow, #plandemic, #plannedemic, #qanons, #scummedia, #sheeple, #thegreatawakening, #wearethe-

newsnow, #wethepeople, #wwgwga, brainwash, cherrypick, chinaviru, conspirac, debunk, dis-

honest, fascism, fake, fauci, fearmong, fraudci, hoax, honkler, hype, hyster, kungflu, lamestream,

mouthpiec, parrot, propagan, puppet, scaremong, strawman

13 Estimating Ideological User Leanings
The final filtered and English-language data set contains approximately 47 million tweets which

had been posted by 4.1 million Twitter users over the course of half a year. As outlined in the

main article, the next step of the data analysis involves estimating the ideological leanings of the

Twitter users.

13.1 Alternative Approaches

Other studies have proposed various approaches to estimating ideological leaning on Twitter.

I review them here to demonstrate why the approach I choose and describe in the following

section is the most appropriate in this case.
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First, it is possible to estimate ideological leaning based on a piece of text since certain words

or discursive techniques can be indicative of the ideological leaning of the speaker (Slapin &

Proksch, 2008). Although this is an established approach, the dictionary which this method is

based on dates back to 2008 and it works best for inferring ideology from longer texts instead of

short Twitter messages. Moreover, all users rely on a similar vocabulary to discuss the Covid-

19 restrictions and it is therefore not possible to meaningfully detect ideology based on word

usage.

Second, prior studies have used URL sharing behavior as an indicator of ideology. For instance,

Cinelli et al. (2021) determine which news outlets users on social media link to in their posts and

they use the bias scores provided by mediabiasfactcheck.com (MBFC) to estimate the ideological

user leaning. However, it is questionable whether this approach captures the true ideological

leaning of users well. For instance, Lazer et al. (2020) analyze the Covid-19 tweets of registered

voters in the United States and they specifically investigate the most shared URLs by Democrat

and Republican voters. Their findings suggest that Republican Twitter users also share liberal

sources such as cnbc.com or cnn.com and that Democrats also link to conservative news outlets

such as nypost.com or foxnews.com. It follows that URL sharing behavior is not a reliable

indicator of ideological leaning.

A third approach to estimating Twitter user ideology relies on a Bayesian ideal point estimation

introduced in Barberá (2015) and Barberá et al. (2015). In this estimation method, a list of elite

Twitter accounts comprising politicians, media outlets, pundits, and experts is identified. This

method draws on the same idea as multidimensional scaling techniques: left-leaning users are

more likely to follow left-leaning elite accounts, whereas right-leaning users prefer right-leaning

accounts. Once the scores for the elite accounts are determined, this method estimates scores

for other Twitter users by considering how many left-leaning and right-leaning accounts they

follow.

Importantly, the elite scores used in Barberá (2015) and Barberá et al. (2015) date back to 2015

and they thus do not capture the current political and media landscape any longer. Recently,

other scholars have proposed updated elite scores but their distribution seems skewed as the

Democratic elites are grouped closely together and the Republican elites are spread out (McCabe
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et al., 2022). Moreover, the scores presented by McCabe et al. (2022) are only preliminary as of

now and might be subject to further changes in the future.
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Figure 13.1: Distribution of elite scores in McCabe et al. (2022).

13.2 Retweet-Based Ideological Scaling

As I argue above, it is questionable whether these approaches could accurately capture the

ideological leaning of Twitter users in the Covid-19 debate on Twitter. I therefore develop the

scaling approach that is based on how often users retweet a list of political and media baseline

accounts.

To match the DW-NOMINATE scores of each politician in the 118th US Congress (2019-2021)

to a Twitter account, I use a comprehensive list of US politician Twitter accounts provided in

McCabe et al. (2022).1 Moreover, to find the accounts of media outlets on Twitter, I use the names

of news outlets available on the MBFC website as a starting point. I then search the Twitter API

in an automated manner to look for Twitter profiles that contain the name of the news outlets.

For each match, the script verifies that the profile descriptions indeed link to the URL associated

with the given media outlet. All ambiguous matches are manually verified.

The MBFC website provides a visual classification of the leaning of each news outlet like the one

shown in Figure 13.2. I use a script to determine where the yellow dot is relative to the outermost

1The data is available in the associated GitHub repository.
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points of the arrow because this relative position can then be translated into a numerical score

between −1 and +1.2

Extreme            Left          Left-Center         Least Biased       Right-Center          Right            Extreme

Figure 13.2: MFBC leaning score for the news outlet Foxnews. Based on the image, I determine the
leaning score of Foxnews to be 0.67.

13.3 Robustness Checks

The final list of baseline accounts contains the Twitter handle and user ID of all available political

and media accounts as well as an ideological leaning score. As argued in the main article, I only

consider users who have retweeted at least 5 posts by the baseline accounts. As the plots below

show, the results are robust regardless of the threshold that is chosen.
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Figure 13.3: Distribution of user scores for different retweet thresholds.

2The list of news outlets and leaning scores had been scraped from the website for a previous project and they
therefore date back to September 2021 (Hohmann et al., 2022).

51



14 Offensive Language Classification
To measure affective polarization, I not only need to estimate the ideological leaning of the

Twitter users, but also the level of hostility of their interactions. As argued in the main article, I

use offensive language as an indicator for hostility. I use use a pre-trained classification model

proposed by Barbieri et al. (2020) to detect offensive tweets. The model returns a binary classi-

fication of tweets as either not offensive or offensive. This section outlines which architecture

underlies the model by Barbieri et al. (2020) and how it was trained.

As a starting point, the authors take a pre-trained RoBERTa-base model, and re-train it on a large

corpus of 60 million English-language tweets that had been posted on Twitter in between May

2018 and August 2019. RoBERTa (Robustly Optimized BERT Pre-training Approach) is a version

of the commonly used BERT model (Bidirectional Encoder Representations from Transformers).

The basic idea of these language models is that they learn contextualized representations from

large text corpora in an unsupervised manner. As opposed to the word2vec word representations

that I discuss above, these models additionally capture contextual information relating to each

word. For instance, the word2vec vector representation of overlook is the same regardless of

whether it refers to failing to notice something or having a view from above. However, the BERT or

RoBERTa representations for a sentence using the word overlook assigns different vectors to the

given word since they are able to account for contextual differences.

In order to train the RoBERTamodel or use it for classification tasks, the words in each document

(tweet) in the corpus are tokenized and an initial input embedding is calculated (for further details

see Devlin et al., 2019; Liu et al., 2019). A fraction of the tokens (usually 15%) are then randomly

masked and the model is tasked with predicting the hidden tokens based on their context. To do

so, RoBERTa relies on a transformer architecture with 24 encoders that each use self-attention

mechanisms to quantify the relationships between the input words (see Figure 14.1).
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Figure 14.1: Architecture of the RoBERTa-base classification model proposed by Barbieri et al. (2020).

Similar to how humans perceive and remember information, self-attention mechanisms de-

termine which words are most important and should thus be focused on in the further steps

of the model. To put it differently, the model captures how important each word in the input

sequence is for the other words in the sequence. RoBERTa uses multi-headed self-attention, i.e.,

each self-attention mechanism is computed multiple times in parallel. The resulting 8 attention

vectors are summarized in one vector and passed through a feed-forward neural network before

the vector enters the next self-attention layer. The RoBERTa-base model is pretrained on a

massive corpus of English-language pieces of text from books, Wikipedia, news sources, and

Reddit. Barbieri et al. (2020) then re-train this model on 60 million English-language tweets. In a

last step, they use a supervised learning approach to fine-tune the model for offensive language

detection. In particular, the authors add a dense layer to reduce RoBERTa’s last layer to only two

labels and they train the model using the labelled data set provided by Zampieri et al. (2019).

They report an F1-score of 81.6 and conclude that the model performs well on the classification

task.
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Figure 14.2: Distribution of probabilities for the offensiveness classification.

I use this fine-tuned model to classify tweets as not offensive (0) or offensive (1). In line with

the preprocessing steps outlined in Barbieri et al. (2020), I remove all line breaks and URL links,

and I replace the user mentions in the text by an anonymized place holder. For each tweet,

the model predicts a class and its associated probability (see Figure 14.2). In line with how

Barbieri et al. (2020) introduce the use of their model, I choose 0.5 as the threshold above which I

consider tweets to contain offensive language. Importantly, the results are robust across different

thresholds as shown in the Figure 14.3.

Furthermore, as I argue in the main article, I only draw one undirected edge between two

individuals and therefore need to summarize the offensiveness scores for multiple interactions

which I do by calculating the average offensiveness score. Other approaches could have entailed

summing all offensiveness scores, or taking the maximum score instead of the average and I

therefore conduct further robustness checks. Figure 14.3 shows that regardless of which approach

I choose, the results are robust as there are no vast differences between them.
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(a) Threshold 0.4; max edge attributes.
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(b) Threshold 0.4; max edge attributes.
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(c) Threshold 0.5; max edge attributes.
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(d) Threshold 0.5, summed edge attributes.
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(e) Threshold 0.6; max edge weights.
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(f) Threshold 0.6; summed edge weights.

Figure 14.3: Affective polarization scores based on the binary offensiveness classes with 0.4 (first row),
0.5 (second row), and 0.6 (third row) as threshold. The plots on the left show the Affective
Polarization Score when the edge attributes are calculated as maximum offensiveness
scores, and the right plots show the Affective Polarization Score for edge attributes that
are summed offensiveness scores.

15 Summary Statistics
I conclude the companion paper by reporting summary statistics for the series of Twitter networks

analyzed here. For each network, Table 15.1 shows the number of nodes n, the number of edges

m, and the density D of the network which describes the number of actual connections relative

to all connections which are theoretically possible. As the table shows, the networks are very

sparse as there are only very few connections compared to the number of edges.

Moreover, the table reports the average shortest path length l. A shortest path between two nodes

is the path with the fewest number of edges connecting them and the average shortest path length

summarizes all these path lengths over all node pairs in the network. Lastly, the table shows
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Week n m D l Q
6 348 378 0.0063 6.2484 0.1004
7 345 380 0.0064 7.6019 0.1079
8 487 559 0.0047 5.8837 0.0478
9 4458 7024 0.0007 4.7452 0.0163
10 4961 7878 0.0006 4.8274 0.0106
11 6802 12114 0.0005 4.6510 0.0002
12 4171 6022 0.0007 5.3276 0.0137
13 6413 10523 0.0005 4.9655 0.0210
14 8104 13333 0.0004 4.8739 0.0411
15 10297 17006 0.0003 4.8960 0.0524
16 11435 19256 0.0003 4.8994 0.0429
17 10910 18424 0.0003 4.8862 0.0530
18 7161 11359 0.0004 4.9495 0.0532
19 7645 11840 0.0004 5.1327 0.0456
20 7047 10950 0.0004 4.9948 0.0404
21 6427 9551 0.0005 5.1769 0.0480
22 5207 7355 0.0005 5.3698 0.0629
23 3603 4817 0.0007 5.7702 0.0629
24 3928 5152 0.0007 5.6979 0.0389
25 4804 6516 0.0006 5.6444 0.0438
26 4930 7282 0.0006 5.1982 0.0139
27 6313 8974 0.0005 5.3813 0.0177
28 7046 10634 0.0004 5.1794 0.0175
29 8472 13416 0.0004 4.9580 0.0262
30 6463 9916 0.0005 5.0978 0.0220
31 6903 10500 0.0004 4.9309 -0.0001

Table 15.1: Summary statistics for the Twitter networks. For each network considered in the analysis,
the table shows the number of nodes n, the number of edges m, the density D, the average
shortest path length l, and the modularity Q. To calculate Q, I partition the network into a
community of liberal nodes (ideological leanings < 0) and a community of conservative
nodes (ideological leanings > 0).

the modularity value Q which indicates how divided a network is into communities based on a

given attribute. To calculate Q, I partition the network into a liberal group and a conservative

group based on the ideological leaning values. The modularity value then compares the expected

fraction of edges if they were randomly distributed to the actual observed fraction of edges

within each group. Q can return values between −0.5 (disassortative community structure) and

+1 (strongly assortative community structure). The table shows that the networks do not exhibit

a community structure, i.e., liberal and conservative users are not divided into clear communities

as is also shown by the visualizations in Figure 5.4 in the main article.

56



16 References
Barberá, P. (2015). Birds of the same feather tweet together: Bayesian ideal point estimation using

Twitter data. Political Analysis, 23(1), 76–91. https://doi.org/10.1093/pan/mpu011

Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is

online political communication more than an echo chamber? Psychological Science, 26(10),

1531–1542. https://doi.org/10.1177/0956797615594620

Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., & Neves, L. (2020). TweetEval: Unified

benchmark and comparative evaluation for tweet classification. Findings of the Association

for Computational Linguistics: EMNLP 2020, 1644–1650. https://doi.org/10.18653/v1/

2020.findings-emnlp.148

Cinelli, M., De, G., Morales, F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo

chamber effect on social media. https : / /doi . org /https : / /doi . org /10 . 1073/pnas .

2023301118

Coscia, M. (2021). Pearson correlations on complex networks. Journal of Complex Networks, 9(6).

https://doi.org/10.1093/comnet/cnab036

Deng, X., Li, G., & Dong, M. (2015). Finding overlapping communities with random walks on

line graph and attraction intensity. In K. Xu & H. Zhu (Eds.),Wireless algorithms, systems,

and applications (pp. 94–103). Springer International Publishing.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional

transformers for language understanding. Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-

1423

Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities.

Phys. Rev. E, 80, 016105. https://doi.org/10.1103/PhysRevE.80.016105

Garimella, K., Morales, G. D. F., Gionis, A., & Mathioudakis, M. (2018). Quantifying controversy

on social media. Trans. Soc. Comput., 1(1). https://doi.org/10.1145/3140565

57

https://doi.org/10.1093/pan/mpu011
https://doi.org/10.1177/0956797615594620
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/https://doi.org/10.1073/pnas.2023301118
https://doi.org/https://doi.org/10.1073/pnas.2023301118
https://doi.org/10.1093/comnet/cnab036
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1103/PhysRevE.80.016105
https://doi.org/10.1145/3140565


Hogg, R. V., McKean, J. W., & Craig, A. T. (2019). Introduction to mathematical statistics (8th ed.).

Pearson Education.

Hohmann,M., Devriendt, K., & Coscia, M. (2022). Quantifying political polarization on a network

using Generalized Euclidean distance [manuscript submitted for publication].

Imran, M., Qazi, U., & Ofli, F. (2022). TBCOV: Two billion multilingual COVID-19 tweets with

sentiment, entity, geo, and gender labels.Data, 7 (1). https://doi.org/10.3390/data7010008

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016). Fasttext.zip:

Compressing text classification models. https://arxiv.org/abs/1612.03651

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for efficient text classifi-

cation. Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 2, Short Papers, 427–431. https://aclanthology.org/E17-

2068

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.

The Bell System Technical Journal, 49(2), 291–307. https://doi .org/10.1002/j .1538-

7305.1970.tb01770.x

Lazer, D., Ruck, D. J., Quintana, A., Shugars, S., Joseph, K., Grinberg, N., Gallagher, R. J., Horgan,

L., Gitomer, A., Bajak, A., A., M., Ognya, K., Qu, H., H, W. R., McCabe, S., & Green, J.

(2020). The state of the nation: A 50-state COVID-19 survey report #18: COVID-19 fake

news on Twitter.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &

Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. https:

//doi.org/10.48550/ARXIV.1907.11692

McCabe, S., Green, J., Wan, A., & Lazer, D. (2022). New tweetscores: Or, did Donald Trump break

tweetscores?Midwestern Political Science Assocation, Chicago, IL.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. Proceedings of the 26th International

Conference on Neural Information Processing Systems - Volume 2, 3111–3119. https://doi.

org/10.48550/arXiv.1310.4546

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations

in vector space. In Y. Bengio & Y. LeCun (Eds.), 1st International Conference on Learning

58

https://doi.org/10.3390/data7010008
https://arxiv.org/abs/1612.03651
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/arXiv.1310.4546
https://doi.org/10.48550/arXiv.1310.4546


Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track

Proceedings. http://arxiv.org/abs/1301.3781

Mønsted, B., & Lehmann, S. (2022). Characterizing polarization in online vaccine discourse: A

large-scale study. PLOS ONE, 17 (2). https://doi.org/10.1371/journal.pone.0263746

Newman, M. E. (2003). Mixing patterns in networks. Physical review E, 67 (2).

Slapin, J. B., & Proksch, S.-O. (2008). A scaling model for estimating time-series party positions

from texts. American Journal of Political Science, 52(3), 705–722. http://www.jstor.org/

stable/25193842

The European Parliament and the Council of European Union. (2016). Regulation (EU) 2016/679

of the European Parliament and of the Council of 27 April 2016 on the protection of

natural persons with regard to the processing of personal data and on the free movement

of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&

from=EN

Tyagi, A., Uyheng, J., & Carley, K. (2021). Heated conversations in a warming world: Affective

polarization in online climate change discourse follows real-world climate anomalies.

Social Networks Analysis and Mining, 11(87). https://doi.org/10.1007/s13278-021-00792-

6

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). SemEval-

2019 task 6: Identifying and categorizing offensive language in social media (OffensEval).

Proceedings of the 13th International Workshop on Semantic Evaluation, 75–86. https :

//doi.org/10.18653/v1/S19-2010

Zhou, F., Yang, X. J., & Zhang, X. (2020). Takeover transition in autonomous vehicles: A YouTube

study. International Journal of Human–Computer Interaction, 36(3), 295–306. https://doi.

org/10.1080/10447318.2019.1634317

59

http://arxiv.org/abs/1301.3781
https://doi.org/10.1371/journal.pone.0263746
http://www.jstor.org/stable/25193842
http://www.jstor.org/stable/25193842
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.1007/s13278-021-00792-6
https://doi.org/10.1007/s13278-021-00792-6
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.1080/10447318.2019.1634317
https://doi.org/10.1080/10447318.2019.1634317

	Acknowledgements
	Abstract
	I SCIENTIFIC ARTICLE
	1 Introduction
	2 Literature Review
	2.1 Traditional Measures of Political Polarization
	2.2 Political Polarization on Social Media

	3 Research Objectives
	4 Operationalization and Methods
	4.1 Ideological Polarization
	4.2 Ideological Polarization Measure: Experiments
	4.3 Affective Polarization
	4.4 Affective Polarization Measure: Experiments

	5 Case Study: Twitter Covid-19 debate
	5.1 Data Collection and Preprocessing
	5.2 Ideological User Leaning
	5.3 Hostility Classification
	5.4 Networks
	5.5 Results: Ideological and Affective Polarization on Twitter

	6 Discussion
	7 References

	II COMPANION PAPER
	8 Network Polarization Measures
	8.1 Generalized Euclidean Polarization Index
	8.2 Affective Polarization Coefficient
	8.3 Scale Invariance
	8.4 Relation Between the Polarization Measures

	9 Alternative Polarization Measures
	9.1 Assortativity Coefficient
	9.2 Random Walk Controversy
	9.3 Pearson Correlation Coefficient
	9.4 Earth Mover's Distance

	10 Synthetic Data Generation
	11 Data Collection
	11.1 Legal Considerations
	11.2 Tweet Locations

	12 Data Preprocessing
	12.1 English Language Detection
	12.2 Keyword List: Covid-19 Restrictions

	13 Estimating Ideological User Leanings
	13.1 Alternative Approaches
	13.2 Retweet-Based Ideological Scaling
	13.3 Robustness Checks

	14 Offensive Language Classification
	15 Summary Statistics
	16 References


